Python的Itetool是一个模块,它提供了各种函数,这些函数在迭代器上工作以产生复杂的迭代器。该模块作为一个快速,内存效率的工具,可以单独使用或组合使用以形成迭代器代数

例如,假设有两个列表,并且您想要将它们的元素相乘。有几种方法可以实现这一目标。可以使用朴素的方法,即同时迭代列表的元素并将它们相乘。另一种方法是使用 map 函数,即通过将 mul 运算符作为第一个参数传递给 map 函数,并将 List 作为该函数的第二个和第三个参数传递。让我们看看每种方法所花费的时间。

# 演示迭代器模块的Python程序


import operator
import time

# 定义列表
L1 = [1, 2, 3]
L2 = [2, 3, 4]

# 映射函数之前的开始时间
t1 = time.time()

# 计算结果
a, b, c = map(operator.mul, L1, L2)

# 映射函数后的结束时间
t2 = time.time()

# 映射函数花费的时间
print("Result:", a, b, c)
print("Time taken by map function: %.6f" %(t2 - t1))

# 初始方法之前的开始时间
t1 = time.time()

# 使用for循环计算结果
print("Result:", end = " ")
for i in range(3):
	print(L1[i] * L2[i], end = " ")
	
# 朴素方法后的结束时间
t2 = time.time()
print("\nTime taken by for loop: %.6f" %(t2 - t1))

输出:

Result: 2 6 12
Time taken by map function: 0.000005
Result: 2 6 12 
Time taken by for loop: 0.000014

在上面的示例中,可以看出 map 函数所花费的时间大约是 for 循环所用时间的一半。这表明迭代工具是快速、内存高效的工具。

此模块提供的不同类型的迭代器包括:

  • 无限迭代器
  • 组合迭代器
  • 终止迭代器

无限迭代器

Python 中的迭代器是可以与“for in 循环”一起使用的任何 Python 类型。Python 列表、元组、字典和集合都是内置迭代器的示例。但是迭代器对象不必穷尽,有时它可以是无限的。这种类型的迭代器称为无限迭代器

Python 提供了三种类型的无限迭代器:

计数(开始,步骤)

此迭代器从“开始”数字开始打印并无限打印。如果提到步骤,则跳过数字,否则默认情况下步骤为1。请参阅下面的示例,了解它与 for in 循环的用法。

例:

# 演示无限迭代器的Python程序

import itertools

# for 循环
for i in itertools.count(5, 5):
	if i == 35:
		break
	else:
		print(i, end =" ")

输出:

5 10 15 20 25 30

循环(可迭代)

此迭代器按传递的容器中的顺序打印所有值。当所有元素都以循环方式打印时,它将再次从头开始重新开始打印

示例 1:

# 演示无限迭代器的Python程序

import itertools

count = 0

# for 循环
for i in itertools.cycle('AB'):
	if count > 7:
		break
	else:
		print(i, end = " ")
		count  = 1

输出:

A B A B A B A B 

示例 2: 使用下一个函数。

# 演示无限迭代器的Python程序

import itertools

l = ['Geeks', 'for', 'Geeks']

# 定义迭代器
iterators = itertools.cycle(l)

# for 循环
for i in range(6):
	
	# Using next function
	print(next(iterators), end = " ")

组合迭代器

输出:

Geeks for Geeks Geeks for Geeks 

重复(值、数)

此迭代器重复打印传递的值无限次。如果提到可选关键字 num,则它会重复打印 num 次数。

例:

# 演示 repeat() 工作的Python代码
	
# 为迭代器操作导入“itertools”
import itertools
	
# 使用 repeat() 重复打印数字
print ("Printing the numbers repeatedly : ")
print (list(itertools.repeat(25, 4)))

输出:

Printing the numbers repeatedly : 
[25, 25, 25, 25]

到此这篇关于Python教程之无限迭代器的使用详解的文章就介绍到这了,更多相关Python无限迭代器内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

Python教程之无限迭代器的使用详解的更多相关文章

  1. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  2. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  3. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  4. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  5. 老司机带你深入浅出 Collection

    迭代器Iterator遵守Sequence协议。迭代器内部有一个称为Element的关联类型。标准库类型中的例子有String.CharacterView,这让字符串片段的使用更为方便。索引Index索引表示集合中的位置。因此,String.CharacterView.Index是一个不可见的值,指向字符串的内部存储缓冲区中的位置。索引距离IndexDistance索引距离是一个带符号的整型,表示两个索引之间的距离。索引范围Indices这是集合的indices属性的返回类型。如果数组的索引是一个整数类型

  6. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  7. 你没看错:Swift可以直接调用Python函数库

    上周Perfect又推出了新一轮服务器端Swift增强函数库:Perfect-Python。对,你没看错,在服务器端Swift其实可以轻松从其他语种的函数库中直接拿来调用,不需要修改任何内容。以如下python脚本为例:Perfect-Python可以用下列方法封装并调用以上函数,您所需要注意的仅仅是其函数名称以及参数。

  8. Swift中的列表解析

    在Swift中完成这个的最简单的方法是什么?我在寻找类似的东西:从Swift2.x开始,有一些与你的Python样式列表解析相当的东西。(在这个意义上,它更像是Python的xrange。如果你想保持集合懒惰一路通过,只是这样说:与Python中的列表解析语法不同,Swift中的这些操作遵循与其他操作相同的语法。

  9. 数组 – 为什么Swift迭代器比数组构建慢?

    这意味着,不知何故,迭代生成器比在内存中构造新数组花费更多的时间,然后迭代它.令人难以置信的是,它甚至比同一程序的python实现慢约5-70%,随着输入的减少而恶化.Swift是用-O标志构建的.这里有三个测试用例1.小输入,混合;2.大输入,[Int]显性,3.大输入,Int显性:迅速蟒蛇生成器和数组构建器:迅速蟒蛇基准测试结果:迅速蟒蛇显然,Swift非常非常擅长构建数组.但是为什么它的发生器在某些情况下如此慢,甚至比Python慢?

  10. swift抛出终端的python错误

    每当我尝试启动与python相关的swift时,我都会收到错误.我该如何解决?

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部