学习目标

1.掌握pytorch模型转换到onnx模型

2.顺利运行onnx模型

3.比对onnx模型和pytorch模型的输出结果

学习大纲

  • pytorch模型转换onnx模型
  • 运行onnx模型
  • onnx模型输出与pytorch模型比对

学习内容

前提条件:需要安装onnx 和 onnxruntime,可以通过 pip install onnx 和 pip install onnxruntime 进行安装

1 . pytorch 转 onnx

pytorch 转 onnx 只需要一个函数 torch.onnx.export

torch.onnx.export(model, args, path, export_params, verbose, input_names, output_names, do_constant_folding, dynamic_axes, opset_version)

参数说明:

  • model——需要导出的pytorch模型
  • args——模型的输入参数,满足输入层的shape正确即可。
  • path——输出的onnx模型的位置。例如‘yolov5.onnx’。
  • export_params——输出模型是否可训练。default=True,表示导出trained model,否则untrained。
  • verbose——是否打印模型转换信息。default=False。
  • input_names——输入节点名称。default=None。
  • output_names——输出节点名称。default=None。
  • do_constant_folding——是否使用常量折叠(不了解),默认即可。default=True。
  • dynamic_axes——模型的输入输出有时是可变的,如Rnn,或者输出图像的batch可变,可通过该参数设置。如输入层的shape为(b,3,h,w),batch,height,width是可变的,但是chancel是固定三通道。
    格式如下 :
    1)仅list(int) dynamic_axes={‘input’:[0,2,3],‘output’:[0,1]}
    2)仅dict<int, string> dynamic_axes={‘input’:{0:‘batch’,2:‘height’,3:‘width’},‘output’:{0:‘batch’,1:‘c’}}
    3)mixed dynamic_axes={‘input’:{0:‘batch’,2:‘height’,3:‘width’},‘output’:[0,1]}
  • opset_version——opset的版本,低版本不支持upsample等操作。
import torch
import torch.nn
import onnx

model = torch.load('best.pt')
model.eval()

input_names = ['input']
output_names = ['output']

x = torch.randn(1,3,32,32,requires_grad=True)

torch.onnx.export(model, x, 'best.onnx', input_names=input_names, output_names=output_names, verbose='True')

2 . 运行onnx模型

检查onnx模型,并使用onnxruntime运行。

import onnx
import onnxruntime as ort

model = onnx.load('best.onnx')
onnx.checker.check_model(model)

session = ort.InferenceSession('best.onnx')
x=np.random.randn(1,3,32,32).astype(np.float32)  # 注意输入type一定要np.float32!!!!!
# x= torch.randn(batch_size,chancel,h,w)


outputs = session.run(None,input = { 'input' : x })

参数说明:

  • output_names: default=None
    用来指定输出哪些,以及顺序
    若为None,则按序输出所有的output,即返回[output_0,output_1]
    若为[‘output_1’,‘output_0’],则返回[output_1,output_0]
    若为[‘output_0’],则仅返回[output_0:tensor]
  • input:dict
    可以通过session.get_inputs().name获得名称
    其中key值要求与torch.onnx.export中设定的一致

3.onnx模型输出与pytorch模型比对

import numpy as np
np.testing.assert_allclose(torch_result[0].detach().numpu(),onnx_result,rtol=0.0001)

如前所述,经验表明,ONNX 模型的运行效率明显优于原 PyTorch 模型,这似乎是源于 ONNX 模型生成过程中的优化,这也导致了模型的生成过程比较耗时,但整体效率依旧可观。

此外,根据对 ONNX 模型和 PyTorch 模型运行结果的统计分析(误差的均值和标准差),可以看出 ONNX 模型的运行结果误差很小、基本可靠。

内容参考:https://zhuanlan.zhihu.com/p/422290231

总结

到此这篇关于pytorch模型转onnx模型的文章就介绍到这了,更多相关pytorch模型转onnx模型内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

pytorch模型转onnx模型的方法详解的更多相关文章

  1. laravel框架模型中非静态方法也能静态调用的原理分析

    这篇文章主要介绍了laravel框架模型中非静态方法也能静态调用的原理,结合实例形式分析了laravel模型基类中使用魔术方法实现非静态方法进行静态调用的相关原理,需要的朋友可以参考下

  2. python神经网络Densenet模型复现详解

    这篇文章主要为大家介绍了python神经网络Densenet模型复现详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  3. Laravel模型间关系设置分表的方法示例

    这篇文章主要给大家介绍了关于Laravel模型间关系设置分表的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧。

  4. Python使用pytorch动手实现LSTM模块

    这篇文章主要介绍了Python使用pytorch动手实现LSTM模块,LSTM是RNN中一个较为流行的网络模块。主要包括输入,输入门,输出门,遗忘门,激活函数,全连接层(Cell)和输出

  5. Pytorch搭建yolo3目标检测平台实现源码

    这篇文章主要为大家介绍了Pytorch搭建yolo3目标检测平台实现源码,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  6. PyTorch搭建双向LSTM实现时间序列负荷预测

    这篇文章主要为大家介绍了PyTorch搭建双向LSTM实现时间序列负荷预测,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  7. Laravel5.1 框架模型创建与使用方法实例分析

    这篇文章主要介绍了Laravel5.1 框架模型创建与使用方法,结合实例形式分析了laravel5.1框架模型的原理、创建、更新、获取等相关操作技巧,需要的朋友可以参考下

  8. python神经网络ResNet50模型的复现详解

    这篇文章主要为大家介绍了python神经网络ResNet50模型的复现详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  9. pytorch使用nn.Moudle实现逻辑回归

    这篇文章主要为大家详细介绍了pytorch使用nn.Moudle实现逻辑回归,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

  10. pytorch加载自己的图片数据集的2种方法详解

    数据预处理在解决深度学习问题的过程中,往往需要花费大量的时间和精力,下面这篇文章主要给大家介绍了关于pytorch加载自己的图片数据集的2种方法,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部