使用cpu和gpu的区别

在Tensorflow中使用gpu和cpu是有很大的差别的。在小数据集的情况下,cpu和gpu的性能差别不大。

不过在大数据集的情况下,cpu的时间显著增加,而gpu变化并不明显。

不过,我的笔记本电脑的风扇终于全功率运行了。

import tensorflow as tf
import timeit
import numpy as np
import matplotlib.pyplot as plt
def cpu_run(num):
  with tf.device('/cpu:0'):
    cpu_a=tf.random.normal([1,num])
    cpu_b=tf.random.normal([num,1])
    c=tf.matmul(cpu_a,cpu_b)
  return c
def gpu_run(num):
  with tf.device('/gpu:0'):
    gpu_a=tf.random.normal([1,num])
    gpu_b=tf.random.normal([num,1])
    c=tf.matmul(gpu_a,gpu_b)
  return c
k=10
m=7
cpu_result=np.arange(m,dtype=np.float32)
gpu_result=np.arange(m,dtype=np.float32)
x_time=np.arange(m)
for i in range(m):
  k=k*10
  x_time[i]=k
  cpu_str='cpu_run(' str(k) ')'
  gpu_str='gpu_run(' str(k) ')'
  #print(cpu_str)
  cpu_time=timeit.timeit(cpu_str,'from __main__ import cpu_run',number=10)
  gpu_time=timeit.timeit(gpu_str,'from __main__ import gpu_run',number=10)
  # 正式计算10次,取平均时间
  cpu_time=timeit.timeit(cpu_str,'from __main__ import cpu_run',number=10)
  gpu_time=timeit.timeit(gpu_str,'from __main__ import gpu_run',number=10)
  cpu_result[i]=cpu_time
  gpu_result[i]=gpu_time
print(cpu_result)
print(gpu_result)
fig, ax = plt.subplots()
ax.set_xscale("log")
ax.set_adjustable("datalim")
ax.plot(x_time,cpu_result)
ax.plot(x_time,gpu_result)
ax.grid()
plt.draw()
plt.show()

在这里插入图片描述

蓝线是cpu的耗时,而红线是gpu的耗时。

一些术语的比较(tensorflow和pytorch/cpu和gpu/)

tensorflow和pytorch

  • pytorch是一个动态框架,tensorflow是一个静态框架。
  • tensorflow是一个静态框架体现在:需要先构建一个tensorflow的计算图,构建好之后这样的一个计算图是不能变的,然后再传入不同的数据进去进行计算。
  • 这种静态框架带来的问题是:固定了计算的流程,势必带来不灵活性,如果要改变计算的逻辑或者是随着时间变化的计算逻辑,这样的动态计算tensorflow是是无法实现的。
  • pytorch是一个动态框架,和python的逻辑一样,对变量做任何操作都是灵活的。
  • 一个好的框架需要具备三点:(1)对大的计算图能方便的实现(2)能自动求变量的导数(3)能简单的运行在GPU上。这三点pytorch都可以达到
  • tensorflow在gpu上的分布式计算更为出色,在数据量巨大的时候效率比pytorch要高。企业很多都是用的tensorflow,pytorch在学术科研上使用多些。
  • pytorch包括三个层次:tensor/variable/module。tensor即张量的意思,由于是矩阵的运算,所以适合在矩阵上跑。variable就是tensor的封装,封装的目的就是为了能够保存住该variable在整个计算图中的位置,能够知道计算图中各个变量之间的相互依赖关系,这样就能够反向求梯度。module是一个更高的层次,是一个神经网络的层次,可以直接调用全连接层、卷积层等神经网络。

cpu和gpu

  • cpu更少的核,但是单个核的计算能力很强
  • gpu:更多的核,每个核的计算能力不如cpu,所以更适合做并行计算,如矩阵计算,深度学习就是很多的矩阵计算。

cuda

  • 直接写cuda代码就类似写汇编语言
  • 比cuda高级的是cudnn
  • 比cudnn高级的是用框架tensorflow/caffe/pytorch

以上为个人经验,希望能给大家一个参考,也希望大家多多支持Devmax。

Tensorflow中使用cpu和gpu有什么区别的更多相关文章

  1. 如何在Android平台上使用Tensorflow?

    谷歌为开发者提供了TENSORFLOW开源软件.有什么方法可以在Android上使用它吗?

  2. 直接在Android NDK端使用tensorflow(不使用JAVA api)

    如何在Android上使用Capis构建和链接tensorflow库.你能指导我吗?

  3. 是否有可能在Android上训练tensorflow?

    似乎没有CAPI来训练张量流图并保存到pb.so,在Android平台上有什么办法吗?我可以在Android设备上使用pythonAPI构建tensorflow工作区吗?

  4. python深度学习tensorflow1.0参数和特征提取

    这篇文章主要为大家介绍了python深度学习tensorflow1.0参数和特征提取,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  5. python人工智能tensorflow函数tf.get_variable使用方法

    这篇文章主要为大家介绍了python人工智能tensorflow函数tf.get_variable使用方法示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  6. python人工智能tensorflow优化器Optimizer算法汇总

    这篇文章主要为大家介绍了python人工智能tensorflowtf优化器Optimizer算法汇总,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  7. python 查看cpu的核数实现

    这篇文章主要介绍了python 查看cpu的核数的实现方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  8. python神经网络tensorflow利用训练好的模型进行预测

    这篇文章主要为大家介绍了python神经网络tensorflow利用训练好的模型进行预测,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  9. python人工智能tensorflow函数np.random模块使用

    这篇文章主要为大家介绍了python人工智能tensorflow函数np.random模块使用方法,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  10. python人工智能tensorflow函数tensorboard使用方法

    这篇文章主要为大家介绍了python人工智能tensorflow函数tensorboard使用方法,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部