前言:

今天和大家分享自己总结的6个常用的Pandas数据处理代码,对于经常处理数据的coder最好熟练掌握。

选取有空值的行

在观察数据结构时,该方法可以快速定位存在缺失值的行。

df = pd.DataFrame({'A': [0, 1, 2],
                   'B': [0, 1, None],
                   'C': [0, None, 2]})
df[df.isnull().T.any()]

输出:

  A   B   C           A   B   C
0 0 0.0 0.0         1 1 1.0 NaN
1 1 1.0 NaN   -->   2 2 NaN 2.0
2 2 NaN 2.0

快速替换列值

实际数据处理经常会根据一些限定条件来替换列中的值。

df = pd.DataFrame({'name':['Python', 'Java', 'C']})
# 第一种方式
df['name'].replace('Java', 'JavaScript', inplace=True)
# 第二种方式
df.loc[df['name'].str.contains('Java'), 'name'] = 'JavaScript'

输出:

     name                   name
0  Python          0      Python
1    Java    --->  1  JavaScript
2       C          2           C

对列进行分区

很多情况下,对于数值类型的数据,我们需要分区来计算每个区间数据出现的频率。这时用 pd.cut 就能很好的解决这一问题。

import random
age = random.sample(range(90), 20)
cut_res = pd.cut(age, bins=[0, 18, 35, 60, 90])
# cut_res type:<class 'pandas.core.arrays.categorical.Categorical'>
cut_res.value_counts()

输出:

(0, 18]     6
(18, 35]    1
(35, 60]    6
(60, 90]    7

将一列分为多列

在文本数据清洗时,一些列中存在分隔符('', ',', ':')分隔的值,我们只需将该列根据分隔符进行 split 即可。

import pandas as pd
df = pd.DataFrame({'address': ['四川省 成都市',
                               '湖北省 武汉市',
                               '浙江省 杭州市']})
res = df['address'].str.split(' ', expand=True)  
res.columns = ['province', 'city']

输出:

  province city
0 四川省    成都市
1 湖北省    武汉市
2 浙江省    杭州市

expand参数选择是否扩展为 DataFrame,False 则返回 Series

中文筛选

同样在清洗过程中,往往会出现一些不需要的中文字段,这时直接用 str.contains 筛选即可。

df = pd.DataFrame({'mobile_phone':
                   ['15928765644',
                    '15567332235',
                    '暂无']})
df[~df['mobile_phone'].str.contains('[\u4e00-\u9fa5]')]

输出:

  mobile_phone         mobile_phone
0 15928765644        0 15928765644
1 15567332235   -->  1 15567332235
2 暂无

更改列的位置

有时我们需要调整列的位置,当数据列较少时,可以用下面的方式

df = pd.DataFrame({'name': ['A', 'B', 'C'],
                   'age': [10, 20, 30],
                   'gender': [0, 1, 0]})
df = df[['name', 'gender', 'age']]

输出:

 name age gender    name gender age
0   A  10 0        0   A 0       10
1   B  20 1   -->  1   B 1       20
2   C  30 0        2   C 0       30

如果列较多,那么,一个个列举出来会比较繁琐,推荐下面插入的方式。

col = df['gender']
df.drop('gender', axis=1, inplace=True)
df.insert(1, 'gender', col)

这就是今天分享的主要内容,实践永远是最好的学习方式,记忆的也更牢固。

到此这篇关于六个实用Pandas数据处理代码的文章就介绍到这了,更多相关 Pandas数据处理 内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

六个实用Pandas数据处理代码的更多相关文章

  1. NT IIS下用ODBC连接数据库

    $connection=intodbc_connect建立数据库连接,$query_string="查询记录的条件"如:$query_string="select*fromtable"用$cur=intodbc_exec检索数据库,将记录集放入$cur变量中。再用while{$var1=odbc_result;$var2=odbc_result;...}读取odbc_exec()返回的数据集$cur。最后是odbc_close关闭数据库的连接。odbc_result()函数是取当前记录的指定字段值。

  2. Thinkphp5框架实现获取数据库数据到视图的方法

    这篇文章主要介绍了Thinkphp5框架实现获取数据库数据到视图的方法,涉及thinkPHP5数据库配置、读取、模型操作及视图调用相关操作技巧,需要的朋友可以参考下

  3. 如何在PHP环境中使用ProtoBuf数据格式

    这篇文章主要介绍了如何在PHP环境中使用ProtoBuf数据格式,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

  4. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  5. Android本地存储方法浅析介绍

    这篇文章主要介绍了Android本地存储案例,方法简单可以实现存储并达到节省内存的效果,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  6. Pandas如何将表格的前几行生成html实战案例

    这篇文章主要介绍了Pandas如何将表格的前几行生成html实战案例,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下

  7. 详解Python如何实现Excel数据读取和写入

    这篇文章主要为大家详细介绍了python如何实现对EXCEL数据进行读取和写入,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

  8. Python自动化办公之Excel数据的写入

    这篇文章主要为大家详细介绍一下Python中excel的写入模块- xlsxwriter,并利用该模块实现Excel数据的写入,感兴趣的小伙伴可以了解一下

  9. Python图像运算之图像阈值化处理详解

    这篇文章将详细讲解图像阈值化处理,涉及阈值化处理、固定阈值化处理和自适应阈值化处理,这是图像边缘检测或图像增强等处理的基础,感兴趣的可以了解一下

  10. pandas如何计算同比环比增长

    这篇文章主要介绍了pandas如何计算同比环比增长,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部