浅拷贝和深拷贝

拷贝函数是专门为可变数据类型listsetdict使用的一种函数。作用是,当一个值指向另一个值的时候,也不会影响指向的值,如果被指向的数据是可变数据,那么它一旦被修改,指向的数据也会随之改变。

什么是可变数据和不可变数据

我们来举一个例子,整型是不可变的数据,那么为什么是不可变的数据呢?一个数据是不是可变的就要关系到python的缓存机制。

当一个数据发生变化,如果它的内存地址没有发生变化,就说明这是一个可变数据。

比如说,我们现在创建一个值是a的变量,它的值是100,然后让这个数值发生变化,观察者个变量的内存地址是否发生了变化。

a = 100
print(a, id(a)) # 100 1610845392

a  = 100
print(a, id(a)) # 200 1610848592

我们发现数值发生了变化,变量的内存也跟着发生了变化,我们再创建一个变量b,值也是整型100

b = 100
print(b, id(b))	# 100 1610845392

发现b的内存地址和a的内存地址是一样的,也就是说,像整型这样的数据类型,一个数字就独占一个内存地址,当某个指向这个值的变量,发生了变化的时候,不是这个变量的值要改变,而是这个变量要寻找改变后的值的内存地址,然后重新的指向它。只要你的硬件不重新启动,那么这个内存地址就永远也不会发生变化了,这样的数据就是不可变数据。

那么,反之就是可变数据,指的就是当变量指向的值发生变化之后,在这个内存地址上的值实打实的发生变化的值,就是可变数据类型。

比如列表,列表发生改变之后,是在原有的基础上发生变化的,所以内存地址是不会改变的,这就是可变数据类型,可变数据类型没有内存缓存机制,不能节省内存,所以一模一样的数据,他们的内存地址可能是不相同的。

a = [1, 2]
print(a, id(a)) # [1, 2] 1528536069896

a.append(3)
print(a, id(a)) # [1, 2, 3] 1528536069896

# b 和 a的值相同,但是内存地址不相同
b = [1, 2, 3]
print(b, id(b)) # [1, 2, 3] 1528536069832

那么拷贝函数是干什么的?

在我们的实际工作当中,经常会使用的一种操作就是定义一个变量,它的值直接就赋给了一个原有的变量之上。可是变量定义之后我们绝不是用来作为一个摆设的,而是要做运算、或者是做一个临时的存储,那么原有的变量的值是要改变的,问题就来了,如果是一个不可变的数据还好,如果是可变的数据,直接的赋值他们的内存地址是相同的, 如果一个变量的值发生变化,同内存地址的的值就都发生改变了,我们的向要临时存储的值也就不再是我们想要的那个值了,这是绝大多数的时候我们不想看到的结果。

我们拿整型为例,变量a直接赋值给变量b,这个时候的变量a b 的值是相同的,但是如果变量a的值发生了变化,是丝毫不影响变量b的值的。

a = 100
print(a, id(a))  # 100 1610845392

b = a
print(b, id(b))  # 100 1610845392

a  = 100
print(a, id(a))  # 200 1610848592
print(b, id(b))  # 100 1610845392

但是如果是可变数据就不是这样的情况了

a = [1, 2]
print(a, id(a))  # [1, 2] 2077688035080

b = a
print(b, id(b))  # [1, 2] 2077688035080

a.append(3)
print(a, id(a))  # [1, 2, 3] 2077688035080
print(b, id(b))  # [1, 2, 3] 2077688035080

不可变数据的这个特性既是一个优点也是一个缺点,缺点就是如果我们想要保存a变量发生变化之前的的一个状况的时候,是保存不下来的,这个时候就出现了拷贝函数,它可以将可变数据变成不可变数据那样的效果。

浅拷贝

使用拷贝函数,将a变量放入作为参数放入函数中,使用b变量接受函数的返回值,就成功的拷贝了变量a,变量b的内存地址和变量a的不一样,这样当它们其中一方发生变化之后,不会影响到另一方的数据。

# 拷贝函数不能直接使用,需要使用import导入copy模块,copy模块的copy函数就是浅拷贝

import copy

a = [1, 2, 3]

# 变量b不在直接是变量a的直接赋值了,而是通过copy函数的返回值
b = copy.copy(a)

# 他们的数值一样,但是内存地址不同,所以他们之间的任意一方发生变化都不会影响到第二方。
print(a, id(a))  # [1, 2, 3] 2343743813320
print(b, id(b))  # [1, 2, 3] 2343743813192

a.append(4)
print(a, id(a))  # [1, 2, 3, 4] 2343743813320
print(b, id(b))  # [1, 2, 3] 2343743813192

但是如果变量a是一个二级容器或者是一个更多级容器,浅拷贝无法拷贝第二级容器或者更多级的容器,所以当第二级容器或者是更多级的容器发生变化的时候,还是会发生变化,因为浅拷贝只能拷贝一级容器,所以多级容器的内存地址还是相同的。

import copy

a = [[66,88], 2, 3]

b = copy.copy(a)

print(a, id(a))  # [[66, 88], 2, 3] 2431683163720
print(b, id(b))  # [[66, 88], 2, 3] 2431683162184

# 改变二级容器
a[0].append(100)
print(a, id(a))  # [[66, 88, 100], 2, 3] 2431683163720
print(b, id(b))  # [[66, 88, 100], 2, 3] 2431683162184

# 浅拷贝不能拷贝二级及以上的容器
print(id(a[0]))  # 1582481372872
print(id(b[0]))  # 1582481372872

深拷贝

浅拷贝只能拷贝一级容器

所以诞生了深拷贝,深拷贝可以拷贝所有级别的容器。

import copy

a = [[66,88], 2, 3]

# 深拷贝使用deepcopy函数
b = copy.deepcopy(a)


print(a, id(a))  # [[66, 88], 2, 3] 2168411158088
print(b, id(b))  # [[66, 88], 2, 3] 2168411156552

a[0].append(100)
print(a, id(a))  # [[66, 88, 100], 2, 3] 2168411158088
print(b, id(b))  # [[66, 88], 2, 3] 2168411156552

# 深拷贝所有级别的容器
print(id(a[0]))  # 2168411158216
print(id(b[0]))  # 2168411122760

总结

使用深浅拷贝需要导入copy模块;

浅拷贝使用copy函数,只能拷贝一级容器的所有元素;

深拷贝使用deepcopy函数,可以拷贝所有级别容器的所有元素;

标准库copy中只有copydeepcopy两个函数对外开放使用;

因为深拷贝要拷贝的元素跟多,所以速度会远不如浅拷贝,在编程的过程中要注意避免造成多余的系统负担;

python中的不可变数据是Number、string、tuple,可变数据是list、set、dict;而拷贝就是专门为可变数据提供的,所以深浅拷贝只适用于list、set、dict,当然,可变数据使用拷贝函数也不会出错,但是没有意义。

到此这篇关于Python可变与不可变数据和深拷贝与浅拷贝的文章就介绍到这了,更多相关Python数据与拷贝内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

Python可变与不可变数据和深拷贝与浅拷贝的更多相关文章

  1. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  2. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  3. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  4. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  5. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  6. 你没看错:Swift可以直接调用Python函数库

    上周Perfect又推出了新一轮服务器端Swift增强函数库:Perfect-Python。对,你没看错,在服务器端Swift其实可以轻松从其他语种的函数库中直接拿来调用,不需要修改任何内容。以如下python脚本为例:Perfect-Python可以用下列方法封装并调用以上函数,您所需要注意的仅仅是其函数名称以及参数。

  7. Swift中的列表解析

    在Swift中完成这个的最简单的方法是什么?我在寻找类似的东西:从Swift2.x开始,有一些与你的Python样式列表解析相当的东西。(在这个意义上,它更像是Python的xrange。如果你想保持集合懒惰一路通过,只是这样说:与Python中的列表解析语法不同,Swift中的这些操作遵循与其他操作相同的语法。

  8. swift抛出终端的python错误

    每当我尝试启动与python相关的swift时,我都会收到错误.我该如何解决?

  9. 在Android上用Java嵌入Python

    解决方法看看this,它适用于J2SE,你可以尝试在Android上运行.

  10. 在android studio中使用python代码构建android应用程序

    我有一些python代码和它的机器人,我正在寻找一种方法来使用android项目中的那些python代码.有没有办法做到这一点!?解决方法有两种主要工具可供使用,它们彼此不同:>QPython>Kivy使用Kivy,大致相同的代码也可以部署到IOS.

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部