一、绘制折线图
import seaborn as sns import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt %matplotlib inline plt.rcParams['font.sans-serif']=['Microsoft YaHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus']=False # 用来正常显示负号 from datetime import datetime plt.figure(figsize=(16,10)) import pyecharts.options as opts from pyecharts.charts import Line from pyecharts.faker import Faker from pyecharts.charts import Bar import os from pyecharts.options.global_options import ThemeType
# 读入数据
cnbodfgbsort=pd.read_csv("cnbodfgbsort.csv")
得到的cnbodfgbsort数据:

import pyecharts.options as opts
from pyecharts.charts import Line
from pyecharts.faker import Faker
c = (
    Line()
    .add_xaxis(cnbodfgbsort.TYPE.tolist()) #X轴
    .add_yaxis("票价",cnbodfgbsort.PRICE.tolist()) #Y轴
    .add_yaxis("人次",cnbodfgbsort.PERSONS.tolist()) #Y轴
    .set_global_opts(title_opts=opts.TitleOpts(title="电影票价与人次")) #标题
)
c.render_notebook() # 显示

二、添加最小值最大值平均值
import pyecharts.options as opts
from pyecharts.charts import Line
from pyecharts.faker import Faker
c = (
    Line()
    .add_xaxis(cnbodfgbsort.TYPE.tolist())
    .add_yaxis("票价",cnbodfgbsort.PRICE.tolist())
    .add_yaxis("人次",cnbodfgbsort.PERSONS.tolist(), markpoint_opts=opts.MarkPointOpts(
            data=[
                opts.MarkPointItem(type_="max", name="最大值"),
                opts.MarkPointItem(type_="min", name="最小值"),
            ]
        ),
        markline_opts=opts.MarkLineOpts(
            data=[opts.MarkLineItem(type_="average", name="平均值")]
        ),)
    .set_global_opts(title_opts=opts.TitleOpts(title="电影票价与人次"))
)
c.render_notebook()


三、竖线提示信息
tooltip_opts=opts.TooltipOpts(trigger="axis")


四、显示工具栏
tooltip_opts=opts.TooltipOpts(trigger="axis")


五、实心面积填充
.set_series_opts(
     areastyle_opts=opts.AreaStyleOpts(opacity=0.5), # 透明度
     label_opts=opts.LabelOpts(is_show=False), # 是否显示标签
 )

六、是否跳过空值
import pyecharts.options as opts
from pyecharts.charts import Line
from pyecharts.faker import Faker
y = Faker.values()
y[3], y[5] = None, None
c = (
    Line()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", y, is_connect_nones=True)
    .set_global_opts(title_opts=opts.TitleOpts(title="Line-连接空数据"))
    .render("line_connect_null.html")
)
如下图:y[3],y[5]数据都是空值,如果直接显示的话,图表会出错


# 使用这个参数来跳过空值,避免折现断掉 is_connect_nones=True
import pyecharts.options as opts
from pyecharts.charts import Line
from pyecharts.faker import Faker
y = Faker.values()
y[3], y[5] = None, None
c = (
    Line()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", y, is_connect_nones=True)
    .set_global_opts(title_opts=opts.TitleOpts(title="Line-连接空数据"))
)
c.render_notebook()

七、折线光滑化
is_smooth=True


八、多X轴
参考官网:》multiple_x_axes

九、阶梯图
is_step=True


到此这篇关于Python pyecharts Line折线图的具体实现的文章就介绍到这了,更多相关Python pyecharts Line折线图内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!