数据可视化是以图形格式呈现数据。它通过以简单易懂的格式汇总和呈现大量数据,帮助人们理解数据的重要性,并有助于清晰有效地传达信息。

考虑这个给定的数据集,我们将为其绘制不同的图表:

用于分析和呈现数据的不同类型的图表

 1.直方图

直方图表示特定现象发生的频率,这些现象位于特定的数值范围内,并以连续和固定的间隔排列。

在下面的代码中绘制直方图Age, Income, Sales。因此,输出中的这些图显示了每个属性的每个唯一值的频率。

# 导入 pandas 和 matplotlib
import pandas as pd
import matplotlib.pyplot as plt

# 创建上面给出的表的二维数组
data = [['E001', 'M', 34, 123, 'Normal', 350],
		['E002', 'F', 40, 114, 'Overweight', 450],
		['E003', 'F', 37, 135, 'Obesity', 169],
		['E004', 'M', 30, 139, 'Underweight', 189],
		['E005', 'F', 44, 117, 'Underweight', 183],
		['E006', 'M', 36, 121, 'Normal', 80],
		['E007', 'M', 32, 133, 'Obesity', 166],
		['E008', 'F', 26, 140, 'Normal', 120],
		['E009', 'M', 32, 133, 'Normal', 75],
		['E010', 'M', 36, 133, 'Underweight', 40] ]

# 使用上述数据数组创建的数据框
df = pd.DataFrame(data, columns = ['EMPID', 'Gender',
									'Age', 'Sales',
									'BMI', 'Income'] )

# 为数值数据创建直方图
df.hist()

# show plot
plt.show()

输出:

2. 柱形图

柱形图用于显示不同属性之间的比较,或者它可以显示项目随时间的比较。

# 此处使用之前代码的数据框

# 绘制数值条形图,将显示所有 3 个年龄、收入、销售额之间的比较
df.plot.bar()

# 在 2 个属性之间绘制
plt.bar(df['Age'], df['Sales'])
plt.xlabel("Age")
plt.ylabel("Sales")
plt.show()

输出:

3. 箱线图

箱线图是基于 minimum, first quartile, median, third quartile, and maximum. 术语“箱线图”来自这样一个事实,即图形看起来像一个矩形,线条从顶部和底部延伸。由于延伸线,这种类型的图有时被称为盒须图。

# 对于数据框的每个数字属性
df.plot.box()

# 单个属性箱线图
plt.boxplot(df['Income'])
plt.show()

输出:

4、饼图

饼图显示一个静态数字以及类别如何代表整体的一部分。饼图以百分比表示数字,所有段的总和需要等于 100%。

plt.pie(df['Age'], labels = {"A", "B", "C",
							"D", "E", "F",
							"G", "H", "I", "J"},
							
autopct ='% 1.1f %%', shadow = True)
plt.show()

plt.pie(df['Income'], labels = {"A", "B", "C",
								"D", "E", "F",
								"G", "H", "I", "J"},
								
autopct ='% 1.1f %%', shadow = True)
plt.show()

plt.pie(df['Sales'], labels = {"A", "B", "C",
							"D", "E", "F",
							"G", "H", "I", "J"},
autopct ='% 1.1f %%', shadow = True)
plt.show()

输出:

5、散点图

散点图显示了两个不同变量之间的关系,它可以揭示分布趋势。当有许多不同的数据点,并且您想突出数据集中的相似性时,应该使用它。这在查找异常值和了解数据分布时很有用。

# 收入和年龄之间的散点图
plt.scatter(df['income'], df['age'])
plt.show()

# 收入和销售额之间的散点图
plt.scatter(df['income'], df['sales'])
plt.show()

# 销售额和年龄之间的散点图
plt.scatter(df['sales'], df['age'])
plt.show()

输出 :

以上就是Python中不同图表的数据可视化的实现的详细内容,更多关于Python图表数据可视化的资料请关注Devmax其它相关文章!

Python中不同图表的数据可视化的实现的更多相关文章

  1. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  2. 如何在Xcode 8中启用Visual Memory Debugger?

    我将项目从以前版本的Xcode迁移到Xcode8.我想要的是使用新的可视化内存调试器.它可用于新项目,但在我导入的项目中完全缺少.为什么是这样?

  3. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  4. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  5. Swift - 继承UIView实现自定义可视化组件附记分牌样例

    在iOS开发中,如果创建一个自定义的组件通常可以通过继承UIView来实现。下面以一个记分牌组件为例,演示了组件的创建和使用,以及枚举、协议等相关知识的学习。效果图如下:组件代码:scoreView.swift123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051importUIKitenumscoreType{caseCommon//普通分数面板Best//最高分面板}pr

  6. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  7. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  8. 你没看错:Swift可以直接调用Python函数库

    上周Perfect又推出了新一轮服务器端Swift增强函数库:Perfect-Python。对,你没看错,在服务器端Swift其实可以轻松从其他语种的函数库中直接拿来调用,不需要修改任何内容。以如下python脚本为例:Perfect-Python可以用下列方法封装并调用以上函数,您所需要注意的仅仅是其函数名称以及参数。

  9. Swift中的列表解析

    在Swift中完成这个的最简单的方法是什么?我在寻找类似的东西:从Swift2.x开始,有一些与你的Python样式列表解析相当的东西。(在这个意义上,它更像是Python的xrange。如果你想保持集合懒惰一路通过,只是这样说:与Python中的列表解析语法不同,Swift中的这些操作遵循与其他操作相同的语法。

  10. 使用自动布局可视化格式与Swift?

    我一直在试图使用AutolayoutVisualFormatLanguageinSwift,使用NSLayoutConstraint.constraintsWithVisualFormat。这里有一些例子,没有什么有用的代码,但就我可以告诉应该让类型检查器快乐:但是,这会触发编译器错误:“Cannotconverttheexpression’stype‘[AnyObject]!’totype‘St

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部