不论是哪一种语言,并发编程都是一项非常重要的技巧。比如我们上一章用的爬虫,就被广泛用在工业的各个领域。我们每天在各个网站、App上获取的新闻信息,很大一部分都是通过并发编程版本的爬虫获得的。

正确并合理的使用并发编程,无疑会给我们的程序带来极大性能上的提升。今天我们就一起学习Python中的并发编程——Futures。

区分并发和并行

我们在学习并发编程时,常常会听到两个词:并发(Concurrency)和并行(Parallelism)这两个术语。这两者经常一起使用,导致很多人以为他们是一个意思,其实是不对的。

首先要辨别一个误区,在Python中,并发并不是只同一时刻上右多个操作(thread或者task)同时进行。相反,在某个特定的时刻上它只允许有一个操作的发生,只不过线程或任务之间会相互切换直到完成,就像下面的图里表达的

在上图中出现了task和thread两种切换顺序的不同方式。分别对应了Python中并发两种形式——threading和asyncio。

对于线程,操作系统知道每个线程的所有信息,因此他会做主在适当的时候做线程切换,这样的好处就是代码容易编写,因为程序员不需要做任何切换操作的处理;但是切换线程的操作,有可能出现在一个语句的执行过程中( 比如X =1),这样比较容易出现race condiiton的情况。

而对于asyncio,主程序想要切换任务的时候必须得到此任务可以被切换的通知,这样一来就可以避免出现上面的race condition的情况。

至于所谓的并行,只在同一时刻、同时发生。Python中的multi-Processing便是这个意思对应多进程,我们可以这么简单的理解,如果我们的电脑是8核的CPU,那么在运行程序时,我们可以强制Python开启8个进程,同时执行,用以加快程序的运行速度。大概是下面这个图的思路

对比看来,并发通常用于I/O操作频繁的场景。比方我们要从网站上下载多个文件,由于I/O操作的时间要比CPU操作的时长多的多,这时并发就比较适合。而在CPU使用比较heavy的场景中,为了加快运行速度,我们会多用几台机器,让多个处理器来运算。

还记得以前写了个博客总结过:在Python中的多线程是依靠CPU切换上下文实现的一种“伪多线程”,在进行大量线程切换过程中会占用比较多的CPU资源,而在进行IO操作时候(不论是在网络上进行数据交互还是从内存、硬盘上读写数据)是不需要CPU进行计算的。所以多线程只适用于IO操作密集的环境,不适用于计算密集型操作。

并发编程之Futures

单线程于多线程性能比较

我们下面通过一个实例,从代码的角度来理解并发编程中的Futures,并进一步比较其于单线程的性能区别

假设我们有个任务,从网站上下载一些内容然后打印出来,如果用单线程的方式是这样实现的

import requests
import time
def download_one(url):
    resp = requests.get(url)
    print('Read {} from {}'.format(len(resp.content),url))
def download_all(urls):
    for url in urls:
        download_one(url)
def main():
    sites = [
        'https://en.wikipedia.org/wiki/Portal:Arts',
        'https://en.wikipedia.org/wiki/Portal:History',
        'https://en.wikipedia.org/wiki/Portal:Society', 
        'https://en.wikipedia.org/wiki/Portal:Biography',
        'https://en.wikipedia.org/wiki/Portal:Mathematics',
        'https://en.wikipedia.org/wiki/Portal:Technology',
        'https://en.wikipedia.org/wiki/Portal:Geography',
        'https://en.wikipedia.org/wiki/Portal:Science',
        'https://en.wikipedia.org/wiki/Computer_science',
        'https://en.wikipedia.org/wiki/Python_(programming_language)',
        'https://en.wikipedia.org/wiki/Java_(programming_language)',
        'https://en.wikipedia.org/wiki/PHP',
        'https://en.wikipedia.org/wiki/Node.js',
        'https://en.wikipedia.org/wiki/The_C_Programming_Language',
        'https://en.wikipedia.org/wiki/Go_(programming_language)' 
    ]
    start_time = time.perf_counter()
    download_all(sites)
    end_time = time.perf_counter()
    print('Download {} sites in {} seconds'.format(len(sites),end_time-start_time))
if __name__ == '__main__':
    main()

这是种最简单暴力最直接的方式:

先遍历存储网站的列表

对当前的网站进行下载操作

当前操作完成后,再对下一个网站进行同样的操作,一直到结束。

可以试出来总耗时大概是2s多,单线程的方式简单明了,但是最大的问题是效率低下,程序最大的时间都消耗在I/O等待上(这还是用的print,如果是写在硬盘上的话时间会更多)。如果在实际生产环境中,我们需要访问的网站至少是以万为单位的,所以这个方案根本行不通。

接着我们看看多线程版本的代码

import concurrent.futures
import requests
import threading
import time
def download_one(url):
    resp = requests.get(url).content
    print('Read {} from {}'.format(len(resp),url))
def download_all(sites):
    with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:
        executor.map(download_one,sites)
def main():
    sites = [
    'https://en.wikipedia.org/wiki/Portal:Arts',
    'https://en.wikipedia.org/wiki/Portal:History',
    'https://en.wikipedia.org/wiki/Portal:Society', 
    'https://en.wikipedia.org/wiki/Portal:Biography',
    'https://en.wikipedia.org/wiki/Portal:Mathematics',
    'https://en.wikipedia.org/wiki/Portal:Technology',
    'https://en.wikipedia.org/wiki/Portal:Geography',
    'https://en.wikipedia.org/wiki/Portal:Science',
    'https://en.wikipedia.org/wiki/Computer_science',
    'https://en.wikipedia.org/wiki/Python_(programming_language)',
    'https://en.wikipedia.org/wiki/Java_(programming_language)',
    'https://en.wikipedia.org/wiki/PHP',
    'https://en.wikipedia.org/wiki/Node.js',
    'https://en.wikipedia.org/wiki/The_C_Programming_Language',
    'https://en.wikipedia.org/wiki/Go_(programming_language)' 
    ]
    start_time = time.perf_counter()
    download_all(sites)
    # for i in sites:
    end_time = time.perf_counter()
    # print('Down {} sites in {} seconds'.format(len(sites),end_time-start_time))
if __name__ == '__main__':
    main()

这段代码的运行时长大概是0.2s,效率一下提升了10倍多,可以注意到这个版本和单线程的区别主要在下面:

def download_all(sites):
    with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:
        executor.map(download_one,sites)

在上面的代码中我们创建了一个线程池,有5个线程可以分配使用。executer.map()与以前将的Python内置的map()函数,表示对sites中的每一个元素并发的调用函数download_one()函数。

顺便提一下,在download_one()函数中,我们使用的requests.get()方法是线程安全的(thread-safe),因此在多线程的环境下,它也可以安全使用,并不会出现race condition(条件竞争)的情况。

另外,虽然线程的数量可以自己定义,但是线程数并不是越多越好,以为线程的创建、维护和删除也需要一定的开销。所以如果设置的很大,反而会导致速度变慢,我们往往要根据实际的需求做一些测试,来寻找最优的线程数量。

当然,我们也可以用并行的方式去提高运行效率,只需要在download_all()函数中做出下面的变化即可

def download_all(sites):
    with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:
        to_do = []
        for site in sites:
            future = executor.submit(download_one,site)
            to_do.append(site)

        for future in concurrent.futures.as_completed(to_do):
            future.result()

在需要改的这部分代码中,函数ProcessPoolExecutor()表示创建进程池,使用多个进程并行的执行程序。不过,这里 通常省略参数workers,因为系统会自动返回CPU的数量作为可以调用的进程数。

就像上面说的,并行方式一般用在CPU密集型的场景中,因为对于I/O密集型操作多数时间会用于等待,相比于多线程,使用多进程并不会提升效率,反而很多时候,因为CPU数量的限制,会导致执行效率不如多线程版本。

到底什么是Futures?

Python中的Futures,位于concurrent.futures和asyncio中,他们都表示带有延迟的操作,Futures会将处于等待状态的操作包裹起来放到队列中,这些操作的状态可以随时查询。而他们的结果或是异常,也能在操作后被获取。

通常,作为用户,我们不用考虑如何去创建Futures,这些Futures底层会帮我们处理好,我们要做的就是去schedule这些Futures的执行。比方说,Futures中的Executor类,当我们中的方法done(),表示相对应的操作是否完成——用True表示已完成,ongFalse表示未完成。不过,要注意的是done()是non-blocking的,会立刻返回结果,相对应的add_done_callback(fn),则表示Futures完成后,相对应的参数fn,会被通知并执行调用。

Futures里还有一个非常重要的函数result(),用来表示future完成后,返回器对应的结果或异常。而as_completed(fs),则是针对给定的future迭代器fs,在其完成后,返回完成后的迭代器。

所以也可以把上面的例子写成下面的形式:

def download_all(sites):
    with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:
        to_do = []
        for site in sites:
            future = executor.submit(download_one,site)
            to_do.append(site)
        for future in concurrent.futures.as_completed(to_do):
            future.result()

这里,我们首先用executor.submit(),将下载每个网站的内容都放进future队列to_do里等待执行。然后是as_completed()函数,在future完成后输出结果

不过这里有个事情要注意一下:future列表中每个future完成的顺序和他在列表中的顺序不一定一致,至于哪个先完成,取决于系统的调度和每个future的执行时间。

为什么多线程每次只有一个线程执行?

前面我们讲过,在一个时刻下,Python主程序只允许有一个线程执行,所以Python的并发,是通过多线程的切换完成的,这是为什么呢?

这就又和以前讲的知识串联到一起了——GIL(全局解释器锁),这里在复习下:

事实上,Python的解释器并不是线程安全的,为了解决由此带来的race condition等问题,Python就引入了GIL,也就是在同一个时刻,只允许一个线程执行。当然,在进行I/O操作是,如果一个线程被block了,GIL就会被释放,从而让另一个线程能够继续执行。

总结

这节课里我们先学习了Python中并发和并行的概念

并发——通过线程(thread)和任务(task)之间相互切换的方式实现,但是同一时刻,只允许有一个线程或任务执行

并行——多个进程同时进行。

并发通常用于I/O频繁操作的场景,而并行则适用于CPU heavy的场景

随后我们通过一个下载网站内容的例子,比较了单线程和运用FUtures的多线程版本的性能差异,显而易见,合理的运用多线程,能够极大的提高程序运行效率。

我们还大致了解了Futures的方式,介绍了一些常用的函数,并辅以实例加以理解。

要注意,Python中之所以同一时刻只允许一个线程运行,其实是由于GIL的存在。但是对于I/O操作而言,当其被block的时候,GIL会被释放,使其他线程继续执行。

以上就是Python并发编程之未来模块Futures的详细内容,更多关于Python并发未来模块Futures的资料请关注Devmax其它相关文章!

Python并发编程之未来模块Futures的更多相关文章

  1. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  2. ios – 为自定义创建的串行异步队列设置优先级

    如何使用GCD为自定义创建的串行异步队列设置高优先级?如果是这样,什么是替代解决方案?解决方法您的队列仍然是串行的.它只会在高优先级全局并发后台队列的一个插槽中一次执行一项任务.一旦创建,串行队列就不能以任何方式“并发”.同样,如果您创建并发队列并将其设置为以串行队列为目标,则它实际上变为串行.这一切都在manpage中有所涉及.

  3. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  4. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  5. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  6. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  7. 你没看错:Swift可以直接调用Python函数库

    上周Perfect又推出了新一轮服务器端Swift增强函数库:Perfect-Python。对,你没看错,在服务器端Swift其实可以轻松从其他语种的函数库中直接拿来调用,不需要修改任何内容。以如下python脚本为例:Perfect-Python可以用下列方法封装并调用以上函数,您所需要注意的仅仅是其函数名称以及参数。

  8. Swift中的列表解析

    在Swift中完成这个的最简单的方法是什么?我在寻找类似的东西:从Swift2.x开始,有一些与你的Python样式列表解析相当的东西。(在这个意义上,它更像是Python的xrange。如果你想保持集合懒惰一路通过,只是这样说:与Python中的列表解析语法不同,Swift中的这些操作遵循与其他操作相同的语法。

  9. swift抛出终端的python错误

    每当我尝试启动与python相关的swift时,我都会收到错误.我该如何解决?

  10. 在Android上用Java嵌入Python

    解决方法看看this,它适用于J2SE,你可以尝试在Android上运行.

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部