前段时间就遇到了这个问题,一直忘了写,今晚夜深人静总结一波~

问题

我相信,看到这篇博客的人,你肯定已经会使用Matplotlib中的pyplot画图。 

比如下面这种图

 你也应该会调整单个图的大小了,就是使用如下语句控制单个图形figure的大小,比如我这里设的8*6的。

fig3 = plt.figure(figsize=(8,6))

但随着继续深入的学习,有时我们很有必要将两个图画在一起,来做对比,所以你也应该会在一个画布上画多个子图了。比如下图

 即是通过subplot实现

#展示一下数据
fig = plt.figure(figsize=(15,7))
 
fig1 = plt.subplot(231)
plt.scatter(data.loc[:,'Avg. Area Income'],data.loc[:,'Price'])
plt.title('Income VS Price')
 
fig2 = plt.subplot(232)
plt.scatter(data.loc[:,'Avg. Area House Age'],data.loc[:,'Price'])
plt.title('Age VS Price')
 
fig3 = plt.subplot(233)
plt.scatter(data.loc[:,'Avg. Area Number of Rooms'],data.loc[:,'Price'])
plt.title('Number VS Price')
 
fig4 = plt.subplot(234)
plt.scatter(data.loc[:,'Area Population'],data.loc[:,'Price'])
plt.title('Population VS Price')
 
fig5 = plt.subplot(235)
plt.scatter(data.loc[:,'size'],data.loc[:,'Price'])
plt.title('size VS Price')
plt.show()

 目前为止图好像没有问题,那问题在哪呢?就是在子图比较少的时候,整个图可能会变形,出现下图情况。

这显然不是我们期望的,我们希望他不要拉长。但是貌似直接通过subplot画出的子图无法更改大小,网上给的一些方案也比较麻烦。

简便的解决方法

 把这两个子图画在同一个画布里,这样即是子图无法改变,但是外面的画布大小可以改变,子图就可以根据外面画布大小自适应的显示了。

对于该图

 其原始代码为

fig6 = plt.subplot(121)
label0 = plt.scatter(X.loc[:,'V1'][y_corrected==0],X.loc[:,'V2'][y_corrected==0])
label1 = plt.scatter(X.loc[:,'V1'][y_corrected==1],X.loc[:,'V2'][y_corrected==1])
label2 = plt.scatter(X.loc[:,'V1'][y_corrected==2],X.loc[:,'V2'][y_corrected==2])
 
plt.title("corrected data")
plt.xlabel('V1')
plt.ylabel('V2')
plt.legend((label0,label1,label2),('label0','label1','label2'))
plt.scatter(centers[:,0],centers[:,1])
 
fig7 = plt.subplot(122)
label0 = plt.scatter(X.loc[:,'V1'][y==0],X.loc[:,'V2'][y==0])
label1 = plt.scatter(X.loc[:,'V1'][y==1],X.loc[:,'V2'][y==1])
label2 = plt.scatter(X.loc[:,'V1'][y==2],X.loc[:,'V2'][y==2])
 
plt.title("labled data")
plt.xlabel('V1')
plt.ylabel('V2')
plt.legend((label0,label1,label2),('label0','label1','label2'))
plt.scatter(centers[:,0],centers[:,1])
plt.show()

 可以看到两个子图fig6和fig7都是直接使用subplot得到的,所以它变形了。

修改后应该是这样的:

对应代码 :

fig = plt.figure(figsize=(11,4))
fig6 = plt.subplot(121)
label0 = plt.scatter(X.loc[:,'V1'][y_corrected==0],X.loc[:,'V2'][y_corrected==0])
label1 = plt.scatter(X.loc[:,'V1'][y_corrected==1],X.loc[:,'V2'][y_corrected==1])
label2 = plt.scatter(X.loc[:,'V1'][y_corrected==2],X.loc[:,'V2'][y_corrected==2])
 
plt.title("corrected data")
plt.xlabel('V1')
plt.ylabel('V2')
plt.legend((label0,label1,label2),('label0','label1','label2'))
plt.scatter(centers[:,0],centers[:,1])
 
fig7 = plt.subplot(122)
label0 = plt.scatter(X.loc[:,'V1'][y==0],X.loc[:,'V2'][y==0])
label1 = plt.scatter(X.loc[:,'V1'][y==1],X.loc[:,'V2'][y==1])
label2 = plt.scatter(X.loc[:,'V1'][y==2],X.loc[:,'V2'][y==2])
 
plt.title("labled data")
plt.xlabel('V1')
plt.ylabel('V2')
plt.legend((label0,label1,label2),('label0','label1','label2'))
plt.scatter(centers[:,0],centers[:,1])
plt.show()

 相比原来的代码就多了第一行的操作,定一个合适画布的大小就可以方便动态调整子图了。

麻烦点的方法

 看到网上是有可以自定义子图大小的方法的,不过相比我想出来的这个方法,感觉太麻烦了。这个方法能解决我这一类问题了,如果后面遇到需要一个子图大一个子图小的问题再单独记录把。

总结

到此这篇关于调整Matplotlib子图大小的文章就介绍到这了,更多相关Matplotlib子图大小调整内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

一文教会你调整Matplotlib子图的大小的更多相关文章

  1. Python数据分析之 Matplotlib 折线图绘制

    这篇文章主要介绍了Python数据分析之 Matplotlib 折线图绘制,在数据分析中,数据可视化也非常重要,下文通过数据分析展开对折线图的绘制,需要的小伙伴可以参考一下

  2. Python利用matplotlib画出漂亮的分析图表

    这篇文章主要介绍了Python利用matplotlib画出漂亮的分析图表,文章首先引入数据集展开详情,需要的朋友可以参考一下

  3. Python matplotlib包和gif包生成gif动画实战对比

    使用matplotlib生成gif动画的方法相信大家应该都看到过,下面这篇文章主要给大家介绍了关于Python matplotlib包和gif包生成gif动画对比的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下

  4. Python Matplotlib通过plt.subplots创建子绘图

    这篇文章主要介绍了Python Matplotlib通过plt.subplots创建子绘图,plt.subplots调用后将会产生一个图表和默认网格,与此同时提供一个合理的控制策略布局子绘图,更多相关需要的朋友可以参考下面文章内容

  5. Python数据分析之 Matplotlib 散点图绘制

    这篇文章主要介绍了Python数据分析之 Matplotlib 散点图绘制,散点图又称散点图,是使用多个坐标点的分布反映数据点分布规律、数据关联关系的图表,下文对散点图的详细介绍及绘制,需要的小伙伴可以参考以一下

  6. 详解Python中matplotlib模块的绘图方式

    Matplotlib是Python中最受欢迎的数据可视化软件包之一,它是 Python常用的2D绘图库,同时它也提供了一部分3D绘图接口。本文将详细介绍Matplotlib的绘图方式,需要的可以参考一下

  7. matplotlib之Pyplot模块绘制三维散点图使用颜色表示数值大小

    在撰写论文时常常会用到matplotlib来绘制三维散点图,下面这篇文章主要给大家介绍了关于matplotlib之Pyplot模块绘制三维散点图使用颜色表示数值大小的相关资料,文中通过图文介绍的非常详细,需要的朋友可以参考下

  8. Python+matplotlib绘制条形图和直方图

    Matplotlib是Python的绘图库,它能让使用者很轻松地将数据图形化,并且提供多样化的输出格式。本文将为大家介绍如何用matplotlib绘制条形图和直方图,感兴趣的朋友可以学习一下

  9. 基于Python matplotlib库绘制箱线图

    这篇文章主要为大家分享了如何利用Python中的matplotlib库实现绘制箱线图与异常值的输出,文中的示例代码讲解详细,需要的可以参考一下

  10. vue-quill-editor如何设置字体大小

    这篇文章主要介绍了vue-quill-editor如何设置字体大小,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部