需求:

小程序端拍照调用python训练好的图片分类模型。实现图片分类识别的功能。

微信小程序端:

重点在chooseImage函数中,根据图片路径获取到图片传递给flask的url;

Page({
    data: {
        SHOW_TOP: true,
        canRecordStart: false,
    },
    data: {
        tempFilePaths:'',
        sourceType: ['camera', 'album']
      },
    isSpeaking: false,
    accessToken: "",
    onLoad: function (options) {
        
        console.log("onLoad!");
        this.setHeader();
        var that=this
        wx.showShareMenu({
            withShareTicket: true //要求小程序返回分享目标信息
        });
        var isShowed = wx.getStorageSync("tip");
        if (isShowed != 1) {
            setTimeout(() => {
                this.setData({
                    SHOW_TOP: false
                })
                wx.setStorageSync("tip", 1)
            }, 3 * 1000)
        } else {
            this.setData({
                SHOW_TOP: false
            })
        };
    },
    },
    
 //头像点击处理事件,使用wx.showActionSheet()调用菜单栏
 buttonclick: function () {
    const that = this
    wx.showActionSheet({
      itemList: ['拍照', '相册'],
      itemColor: '',
      //成功时回调
      success: function (res) {
        if (!res.cancel) {
          /*
           res.tapIndex返回用户点击的按钮序号,从上到下的顺序,从0开始
           比如用户点击本例中的拍照就返回0,相册就返回1
           我们res.tapIndex的值传给chooseImage()
          */
          that.chooseImage(res.tapIndex)
        }
      },
      
setHeader(){
    const tempFilePaths = wx.getStorageSync('tempFilePaths');
    if (tempFilePaths) {
      this.setData({
        tempFilePaths: tempFilePaths
      })
    } else {
      this.setData({
        tempFilePaths: '/images/camera.png'
      })
    }
  },

  chooseImage(tapIndex) {
    const checkeddata = true
    const that = this
    wx.chooseImage({
    //count表示一次可以选择多少照片
      count: 1,
      //sizeType所选的图片的尺寸,original原图,compressed压缩图
      sizeType: ['original', 'compressed'],
      //如果sourceType为camera则调用摄像头,为album时调用相册
      sourceType: [that.data.sourceType[tapIndex]],
      success(res) {
        // tempFilePath可以作为img标签的src属性显示图片
        console.log(res);
        const tempFilePaths = res.tempFilePaths
        //将选择到的图片缓存到本地storage中
        wx.setStorageSync('tempFilePaths', tempFilePaths)
        /*
		由于在我们选择图片后图片只是保存到storage中,所以我们需要调用一次   	        setHeader()方法来使页面上的头像更新
		*/
        that.setHeader();
        // wx.showToast({
        //   title: '设置成功',
        //   icon: 'none',
        // //   duration: 2000
        // })
        wx.showLoading({
            title: '识别中...',
        })
        
        var team_image = wx.getFileSystemManager().readFileSync(res.tempFilePaths[0], "base64")
        wx.request({
          url: 'http://127.0.0.1:5000/upload', //API地址,upload是我给路由起的名字,参照下面的python代码
                     method: "POST",
          header: {
                     'content-type': "application/x-www-form-urlencoded",
                    },
          data: {image: team_image},//将数据传给后端
     
        success: function (res) {
            console.log(res.data);  //控制台输出返回数据  
            wx.hideLoading()
            wx.showModal({

                title: '识别结果', 
                confirmText: "识别正确",
                cancelText:"识别错误",
                content: res.data, 
                success: function(res) { 
                if (res.confirm) {
                console.log('识别正确')
                } else if (res.cancel) {
                console.log('重新识别')
                }
                }
                })     
          }
        })
      }
    })
  },
});

flask端:

将图片裁剪,填充,调用自己训练保存最优的模型,用softmax处理结果矩阵,最后得到预测种类

# coding=utf-8
from flask import Flask, render_template, request, jsonify
from werkzeug.utils import secure_filename
from datetime import timedelta
from flask import Flask, render_template, request
import torchvision.transforms as transforms
from PIL import Image
from torchvision import models
import os
import torch
import json
import numpy as np
import torch.nn as nn
import matplotlib.pyplot as plt
import base64

app = Flask(__name__)

def softmax(x):
    exp_x = np.exp(x)
    softmax_x = exp_x / np.sum(exp_x, 0)
    return softmax_x

with open('dir_label.txt', 'r', encoding='utf-8') as f:
    labels = f.readlines()
    print("oldlabels:",labels)
    labels = list(map(lambda x: x.strip().split('\t'), labels))
    print("newlabels:",labels)

def padding_black(img):
    w, h = img.size

    scale = 224. / max(w, h)
    img_fg = img.resize([int(x) for x in [w * scale, h * scale]])

    size_fg = img_fg.size
    size_bg = 224

    img_bg = Image.new("RGB", (size_bg, size_bg))

    img_bg.paste(img_fg, ((size_bg - size_fg[0]) // 2,
                              (size_bg - size_fg[1]) // 2))

    img = img_bg
    return img
# 输出
@app.route('/')
def hello_world():
    return 'Hello World!'

# 设置允许的文件格式
ALLOWED_EXTENSIONS = set(['png', 'jpg', 'JPG', 'PNG', 'bmp'])
def allowed_file(filename):
    return '.' in filename and filename.rsplit('.', 1)[1] in ALLOWED_EXTENSIONS

# 设置静态文件缓存过期时间
app.send_file_max_age_default = timedelta(seconds=1)

# 添加路由
@app.route('/upload', methods=['POST', 'GET'])
def upload():
    if request.method == 'POST':
        # 通过file标签获取文件
        team_image = base64.b64decode(request.form.get("image"))  # 队base64进行解码还原。
        with open("static/111111.jpg", "wb") as f:
            f.write(team_image)
        image = Image.open("static/111111.jpg")
        # image = Image.open('laji.jpg')
        image = image.convert('RGB')
        image = padding_black(image)
        transform1 = transforms.Compose([
            transforms.Resize(224),
            transforms.ToTensor(),
        ])
        image = transform1(image)
        image = image.unsqueeze(0)
        # image = torch.unsqueeze(image, dim=0).float()
        print(image.shape)
        model = models.resnet50(pretrained=False)
        fc_inputs = model.fc.in_features
        model.fc = nn.Linear(fc_inputs, 214)
        # model = model.cuda()
        # 加载训练好的模型
        checkpoint = torch.load('model_best_checkpoint_resnet50.pth.tar')
        model.load_state_dict(checkpoint['state_dict'])
        model.eval()

        src = image.numpy()
        src = src.reshape(3, 224, 224)
        src = np.transpose(src, (1, 2, 0))
        # image = image.cuda()
        # label = label.cuda()
        pred = model(image)
        pred = pred.data.cpu().numpy()[0]

        score = softmax(pred)
        pred_id = np.argmax(score)

        plt.imshow(src)
        print('预测结果:', labels[pred_id][0])
        # return labels[pred_id][0];
        return json.dumps(labels[pred_id][0], ensure_ascii=False)//将预测结果传回给前端
        # plt.show()
    #     return render_template('upload_ok.html')
    #     重新返回上传界面
    # return render_template('upload.html')

if __name__ == '__main__':
    app.run(debug=False)

大致的效果:

但是在手机上测试的话,wx.request{}里的url的域名不规范,不能出现这种端口号,目前还在想解决办法,有知道的大佬还望告知。

总结

到此这篇关于微信小程序前端如何调用python后端模型的文章就介绍到这了,更多相关小程序调用python后端模型内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

微信小程序前端如何调用python后端的模型详解的更多相关文章

  1. 微信小程序“圣诞帽”的实现思路详解

    这两天朋友圈被圣诞帽刷屏,下面通过本文给大家分享微信小程序“圣诞帽”的实现思路详解,需要的朋友参考下吧

  2. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  3. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  4. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  5. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  6. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  7. 你没看错:Swift可以直接调用Python函数库

    上周Perfect又推出了新一轮服务器端Swift增强函数库:Perfect-Python。对,你没看错,在服务器端Swift其实可以轻松从其他语种的函数库中直接拿来调用,不需要修改任何内容。以如下python脚本为例:Perfect-Python可以用下列方法封装并调用以上函数,您所需要注意的仅仅是其函数名称以及参数。

  8. Swift中的列表解析

    在Swift中完成这个的最简单的方法是什么?我在寻找类似的东西:从Swift2.x开始,有一些与你的Python样式列表解析相当的东西。(在这个意义上,它更像是Python的xrange。如果你想保持集合懒惰一路通过,只是这样说:与Python中的列表解析语法不同,Swift中的这些操作遵循与其他操作相同的语法。

  9. swift抛出终端的python错误

    每当我尝试启动与python相关的swift时,我都会收到错误.我该如何解决?

  10. 在Android上用Java嵌入Python

    解决方法看看this,它适用于J2SE,你可以尝试在Android上运行.

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部