一.图像加法运算

1.Numpy库加法

其运算方法是:目标图像 = 图像1 图像2,运算结果进行取模运算。

  • 当像素值<=255时,结果为“图像1 图像2”,例如:120 48=168
  • 当像素值>255时,结果为对255取模的结果,例如:(255 64)%5=64

2.OpenCV加法运算

另一种方法是直接调用OpenCV库实现图像加法运算,方法如下:

目标图像 = cv2.add(图像1, 图像2)

此时结果是饱和运算,即:

  • 当像素值<=255时,结果为“图像1 图像2”,例如:120 48=168
  • 当像素值>255时,结果为255,例如:(255 64) = 255

两种方法对应的代码如下所示:

#encoding:utf-8
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取图片
img = cv2.imread('picture.bmp')
test = img
#方法一:Numpy加法运算
result1 = img   test
#方法二:OpenCV加法运算
result2 = cv2.add(img, test)
#显示图像
cv2.imshow("original", img)
cv2.imshow("result1", result1)
cv2.imshow("result2", result2)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如下图所示,其中result1为第一种方法,result2为第二种方法,白色点255更多。

注意:参与运算的图像大小和类型必须一致。下面是对彩色图像进行加法运算的结果。

二.图像融合

图像融合通常是指将2张或2张以上的图像信息融合到1张图像上,融合的图像含有更多的信息,能够更方便人们观察或计算机处理。如下图所示,将两张不清晰的图像融合得到更清晰的图。

图像融合是在图像加法的基础上增加了系数和亮度调节量。

  • 图像加法:目标图像 = 图像1 图像2
  • 图像融合:目标图像 = 图像1 * 系数1 图像2 * 系数2 亮度调节量

主要调用的函数是addWeighted,方法如下:

dst = cv2.addWeighter(scr1, alpha, src2, beta, gamma)
dst = src1 * alpha   src2 * beta   gamma

其中参数gamma不能省略。

代码如下:

#encoding:utf-8
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取图片
src1 = cv2.imread('test22.jpg')
src2 = cv2.imread('picture.bmp')
#图像融合
result = cv2.addWeighted(src1, 1, src2, 1, 0)
#显示图像
cv2.imshow("src1", src1)
cv2.imshow("src2", src2)
cv2.imshow("result", result)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

需要注意的是,两张融合的图像像素大小需要一致,如下图所示,将两张RGB且像素410*410的图像融合。

设置不同的比例的融合如下所示:

result = cv2.addWeighted(src1, 0.6, src2, 0.8, 10)

三.图像类型转换

图像类型转换是指将一种类型转换为另一种类型,比如彩色图像转换为灰度图像、BGR图像转换为RGB图像。OPenCV提供了200多种不同类型之间的转换,其中最常用的包括3类,如下:

  • cv2.COLOR_BGR2GRAY
  • cv2.COLOR_BGR2RGB
  • cv2.COLOR_GRAY2BGR

代码如下所示:

#encoding:utf-8
import cv2
import numpy as np
import matplotlib.pyplot as plt

#读取图片
src = cv2.imread('01.bmp')

#图像类型转换
result = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)

#显示图像
cv2.imshow("src", src)
cv2.imshow("result", result)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如下图所示:

如果使用通道转化,则结果如下图所示:

result = cv2.cvtColor(src, cv2.COLOR_BGR2RGB)

图像处理通常需要将彩色图像转换为灰度图像再进行后续的操作,更多知识后续将继续分享,希望对着喜欢,尤其是做图像识别、图像处理的同学。

到此这篇关于使用Python实现图像融合及加法运算的文章就介绍到这了,更多相关Python图像融合内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

使用Python实现图像融合及加法运算的更多相关文章

  1. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  2. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  3. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  4. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  5. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  6. 你没看错:Swift可以直接调用Python函数库

    上周Perfect又推出了新一轮服务器端Swift增强函数库:Perfect-Python。对,你没看错,在服务器端Swift其实可以轻松从其他语种的函数库中直接拿来调用,不需要修改任何内容。以如下python脚本为例:Perfect-Python可以用下列方法封装并调用以上函数,您所需要注意的仅仅是其函数名称以及参数。

  7. Swift中的列表解析

    在Swift中完成这个的最简单的方法是什么?我在寻找类似的东西:从Swift2.x开始,有一些与你的Python样式列表解析相当的东西。(在这个意义上,它更像是Python的xrange。如果你想保持集合懒惰一路通过,只是这样说:与Python中的列表解析语法不同,Swift中的这些操作遵循与其他操作相同的语法。

  8. swift抛出终端的python错误

    每当我尝试启动与python相关的swift时,我都会收到错误.我该如何解决?

  9. 在Android上用Java嵌入Python

    解决方法看看this,它适用于J2SE,你可以尝试在Android上运行.

  10. 在android studio中使用python代码构建android应用程序

    我有一些python代码和它的机器人,我正在寻找一种方法来使用android项目中的那些python代码.有没有办法做到这一点!?解决方法有两种主要工具可供使用,它们彼此不同:>QPython>Kivy使用Kivy,大致相同的代码也可以部署到IOS.

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部