1. pyecharts 模块介绍

Echarts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而 Python 是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时,pyecharts 诞生了。

pyecharts 官网:https://pyecharts.org/#/zh-cn/

pyecharts 画廊地址:https://gallery.pyecharts.org/#/README

2. pyecharts 模块安装

pip install pyecharts

3. pyecharts 配置选项

pyecharts 模块中有很多配置选项,常用到两个类别的选项:全局配置选项和系列配置选项。

3.1 全局配置选项

全局配置选项可以通过 set_global_opts 方法来进行配置,通常对图表的一些通用的基础的元素进行配置,例如标题、图例、工具箱、鼠标移动效果等等,它们与图表的类型无关。

示例代码:通过折线图对象对折线图进行全局配置

from pyecharts.charts import Line
from pyecharts.options import TitleOpts, LegendOpts, ToolboxOpts, VisualMapOpts

# 获取折线图对象
line = Line()

# 对折线图进行全局配置
line.set_global_opts(
    # 设置标题、标题的位置...
    title_opts=TitleOpts("国家GDP展示", pos_left="center", pos_bottom="1%"),
    # 设置图例是展示的...
    legend_opts=LegendOpts(is_show=True),
    # 设置工具箱是展示的
    toolbox_opts=ToolboxOpts(is_show=True),
    # 设置视觉映射是展示的
    visualmap_opts=VisualMapOpts(is_show=True)
)

3.2 系列配置选项

系列配置选项是针对某个具体的参数进行配置,可以去 pyecharts 官网进行了解。

4. 基础折线图的构建

4.1 基本使用流程

1.导包,导入 Line 功能构建折线图对象

from pyecharts.charts import Line
from pyecharts.options import TitleOpts, LegendOpts, ToolboxOpts, VisualMapOpts

2.获取折线图对象

line = Line()

3.添加 x、y 轴数据(添加系列配置)

line.add_xaxis(["中国", "美国", "英国"])
line.add_yaxis("GDP", [30, 20, 10])

4.添加全局配置

line.set_global_opts(
    # 设置标题、标题的位置...
    title_opts=TitleOpts("国家GDP展示", pos_left="center", pos_bottom="1%"),
    # 设置图例是展示的...
    legend_opts=LegendOpts(is_show=True),
    # 设置工具箱是展示的
    toolbox_opts=ToolboxOpts(is_show=True),
    # 设置视觉映射是展示的
    visualmap_opts=VisualMapOpts(is_show=True)
)

5.生成图表(通过 render 方法将代码生成图像)

line.render()

4.2 实现2020年美印日确诊人数对比折线图

import json
from pyecharts.charts import Line
# 获取不同国家疫情时间
from pyecharts.options import TitleOpts, LabelOpts
def getdata(file):
    # 处理数据
    try:
        f = open(file, 'r', encoding='utf8')
    except FileNotFoundError as e:
        print(f"文件不存在,具体错误为:{e}")
    else:
        data = f.read()

        # JSON 转 Python 字典
        dict = json.loads(data)

        # 获取 trend
        trend_data = dict['data'][0]['trend']

        # 获取日期数据,用于 x 轴(只拿2020年的数据)
        x_data = trend_data['updateDate'][:314]

        # 获取确认数据,用于 y 轴
        y_data = trend_data['list'][0]['data'][:314]

        # 返回结果
        return x_data, y_data
    finally:
        f.close()


# 获取美国数据
us_x_data, us_y_data = getdata("E:\\折线图数据\\美国.txt")

# 获取印度数据
in_x_data, in_y_data = getdata("E:\\折线图数据\\印度.txt")

# 获取日本数据
jp_x_data, jp_y_data = getdata("E:\\折线图数据\\日本.txt")

# 生成图表
line = Line()

# 添加 x 轴数据(日期,公用数据,不同国家都一样)
line.add_xaxis(us_x_data)

# 添加 y 轴数据(设置 y 轴的系列配置,将标签不显示)
line.add_yaxis("美国确诊人数", us_y_data, label_opts=LabelOpts(is_show=False))  # 添加美国数据
line.add_yaxis("印度确诊人数", in_y_data, label_opts=LabelOpts(is_show=False))  # 添加印度数据
line.add_yaxis("日本确诊人数", jp_y_data, label_opts=LabelOpts(is_show=False))  # 添加日本数据

# 配置全局选项
line.set_global_opts(
    # 设置标题
    title_opts=TitleOpts("2020年美日印三国确诊人数对比折线图", pos_left="center", pos_bottom="1%"),

)

# 生成图表
line.render()

5. 基础地图构建

5.1 基本使用流程

1.导包,导入 Map 功能获取地图对象

from pyecharts.charts import Map
from pyecharts.options import VisualMapOpts

2.获取地图对象

map = Map()

3.准备好数据

data = [
    ("北京", 99),
    ("上海", 199),
    ("广州", 299),
    ("湖南", 199),
    ("安徽", 99),
    ("湖北", 399),
]

4.添加数据到地图对象中

# 地图名称、传入的数据、地图类型(默认是中国地图)
map,add("地图", data, "china")

5.添加全局配置

map.set_global_opts(
    # 设置视觉映射配置
    visualmap_opts=VisualMapOpts(
        # 打开视觉映射(可能不精准,因此可以开启手动校准)
        is_show=True,
        # 开启手动校准范围
        is_piecewise=True,
        # 设置要校准参数的具体范围
        pieces=[
            {"min": 1, "max": 9, "label": "1~9人", "color": "#CCFFFF"},
            {"min": 10, "max": 99, "label": "10~99人", "color": "#FFFF99"},
            {"min": 100, "max": 199, "label": "100~199人", "color": "#FF9966"},
            {"min": 200, "max": 299, "label": "200~299人", "color": "#FF6666"},
            {"min": 300, "label": "300人以上", "color": "#CC3333"},
        ]
    )
)

6.生成地图

map.render()

5.2 实现国内疫情地图

import json
from pyecharts.charts import Map
from pyecharts.options import VisualMapOpts, TitleOpts, LegendOpts

# 读取数据
f = open("E:\\地图数据\\疫情.txt", 'r', encoding='utf8')
str_json = f.read()

# 关闭文件
f.close()

# JSON 转 python 字典
data_dict = json.loads(str_json)

# 取到各省数据
province_data_list = data_dict['areaTree'][0]['children']

# 组装每个省份和确诊人数为元组,并封装到列表内
data_list = []
for province_data in province_data_list:
    province_name = province_data['name']
    province_total_confirm = province_data['total']['confirm']
    data_list.append((province_name, province_total_confirm))

# 创建地图对象
map = Map()

# 添加数据
map.add("各省确诊总人数", data_list, "china")

# 设置全局配置,定制分段的视觉映射
map.set_global_opts(
    title_opts=TitleOpts('全国疫情地图', pos_left='center', pos_bottom='1%'),
    legend_opts=LegendOpts(is_show=True),
    visualmap_opts=VisualMapOpts(
        is_show=True,
        is_piecewise=True,
        pieces=[
            {"min": 1, "max": 9, "label": "1~9人", "color": "#CCFFFF"},
            {"min": 10, "max": 99, "label": "10~99人", "color": "#FFFF99"},
            {"min": 100, "max": 499, "label": "100~499人", "color": "#FF9966"},
            {"min": 500, "max": 999, "label": "500~999人", "color": "#FF6666"},
            {"min": 1000, "max": 9999, "label": "1000~9999人", "color": "#CC3333"},
            {"min": 10000, "label": "10000人以上", "color": "#990033"}
        ]
    )
)

# 绘图
map.render()

5.3 实现省级疫情地图

import json
from pyecharts.charts import Map
from pyecharts.options import VisualMapOpts, TitleOpts, LegendOpts

# 读取数据
f = open("E:\\地图数据\\疫情.txt", 'r', encoding='utf8')
str_json = f.read()

# 关闭文件
f.close()

# JSON 转 python 字典
data_dict = json.loads(str_json)

# 取到河南省数据
city_data_list = data_dict['areaTree'][0]['children'][3]['children']

# 组装每个市和确诊人数为元组,并封装到列表内
data_list = []
for city_data in city_data_list:
    city_name = city_data['name']   "市"
    city_total_confirm = city_data['total']['confirm']
    data_list.append((city_name, city_total_confirm))

# 创建地图对象
map = Map()

# 添加数据
map.add("各市确诊总人数", data_list, "河南")

# 设置全局配置,定制分段的视觉映射
map.set_global_opts(
    title_opts=TitleOpts('河南省疫情地图', pos_left='center', pos_bottom='1%'),
    legend_opts=LegendOpts(is_show=True),
    visualmap_opts=VisualMapOpts(
        is_show=True,
        is_piecewise=True,
        pieces=[
            {"min": 1, "max": 9, "label": "1~9人", "color": "#CCFFFF"},
            {"min": 10, "max": 99, "label": "10~99人", "color": "#FFFF99"},
            {"min": 100, "max": 499, "label": "100~499人", "color": "#FF9966"},
            {"min": 500, "max": 999, "label": "500~999人", "color": "#FF6666"},
            {"min": 1000, "max": 9999, "label": "1000~9999人", "color": "#CC3333"},
            {"min": 10000, "label": "10000人以上", "color": "#990033"}
        ]
    )
)

# 绘图
map.render()

6. 基础柱状图构建

6.1 基本使用流程

1.导包,导入 Bar 功能获取地图对象

from pyecharts.charts import Bar
from pyecharts.options import *

2.获取地图对象

bar = Bar()

3.添加 x 和 y 轴数据

# 添加 x 轴数据
bar.add_xaxis(["中国", "英国", "美国"])
# 添加 y 轴数据
bar.add_yaxis("GDP", [30, 20, 10])

4.添加全局配置

bar.set_global_opts(
    title_opts=TitleOpts("基础柱状图", pos_left='center', pos_bottom='1%')
)

5.生成地图

bar.render()

6.反转 xy 轴

bar.reversal_axis()

7.将数值标签添设置到右侧

bar.add_yaxis("GDP", [30, 20, 10], label_opts=LabelOpts(position='right'))

6.2 基础时间线柱状图

柱状图描述的是分类数据,但很难动态的描述一个趋势性的数据,为此 pyecharts 中提供了一种解决方案时间线。

如果说一个 Bar、Line 对象是一张图表的话,时间线就是创建一个一维的 x 轴,轴上的每一个点就是一个图表对象。

创建时间线的基础流程:

1.导包,导入时间线 Timeline

from pyecharts.charts import Bar, Timeline
from pyecharts.options import *

2.准备好图表对象并添加好数据

bar1 = Bar()
bar1.add_xaxis(["中国", "英国", "美国"])
bar1.add_yaxis("GDP", [30, 20, 10], label_opts=LabelOpts(position='right'))
bar1.reversal_axis()

bar2 = Bar()
bar2.add_xaxis(["中国", "英国", "美国"])
bar2.add_yaxis("GDP", [50, 20, 30], label_opts=LabelOpts(position='right'))
bar2.reversal_axis()

bar3 = Bar()
bar3.add_xaxis(["中国", "英国", "美国"])
bar3.add_yaxis("GDP", [60, 30, 40], label_opts=LabelOpts(position='right'))
bar3.reversal_axis()

3.创建时间线对象 Timeline

timeline = Timeline()

4.将图表添加到 Timeline 对象中

# 添加图表到时间线中(图表对象,点名称)
timeline.add(bar1, "2020年GDP")
timeline.add(bar2, "2021年GDP")
timeline.add(bar3, "2022年GDP")

5.通过时间线绘图

timeline.render()

6.设置自动播放

timeline.add_schema(
    play_interval=1000,      # 自动播放的时间间隔,单位毫秒
    is_timeline_show=True,  # 是否显示自动播放的时候,显示时间线(默认 True)
    is_auto_play=True,       # 是否在自动播放(默认 False)
    is_loop_play=True        # 是否循环自动播放(默认 True)
)

7.设置时间线主题

# 导入 ThemeType
from pyecharts.globals import ThemeType

# 创建时间线对象时,设置主题参数
timeline = Timeline({"theme": ThemeType.DARK})

主题参数如下:

6.3 实现动态 GDP 柱状图

import json
from pyecharts.charts import Bar, Timeline
from pyecharts.options import *
from pyecharts.globals import ThemeType

# 读取数据
f = open("E:\\动态柱状图数据\\1960-2019全球GDP数据.csv", 'r', encoding='GB2312')
data_lines = f.readlines()

# 关闭文件
f.close()

# 删除第一条数据
data_lines.pop(0)

# 将数据转化为字典才能出,格式为 {年份1: [[国家1, GDP], [国家2, GDP]], 年份2: [国家, GDP], ...}
data_dict = dict()

for line in data_lines:
    year = int(line.split(',')[0])  # 年份
    country = line.split(',')[1]  # 国家
    gdp = float(line.split(',')[2])  # gdp 数据,通过 float 强制转换可以把带有科学计数法的数字转换为普通数字

    try:  # 如果 key 不存在,则会抛出异常 KeyError
        data_dict[year].append([country, gdp])
    except KeyError:
        data_dict[year] = [[country, gdp]]

# 排序年份(字典对象的 key 可能是无序的)
sorted_year_list = sorted(data_dict.keys())

# 创建时间线对象
timeline = Timeline({"theme": ThemeType.LIGHT})

# 组装数据到 Bar 对象中,并添加到 timeline 中
for year in sorted_year_list:
    data_dict[year].sort(key=lambda element: element[1], reverse=True)
    # 该年份GDP前八的国家
    year_data = data_dict[year][:8]
    x_data = []
    y_data = []
    for country_gdp in year_data:
        x_data.append(country_gdp[0])
        y_data.append(country_gdp[1] / 100000000)
    # 创建柱状图
    bar = Bar()
    x_data.reverse()
    y_data.reverse()
    # 添加 x y 轴数据
    bar.add_xaxis(x_data)
    bar.add_yaxis("GDP(亿)", y_data, label_opts=LabelOpts(position='right'))
    # 反转 x y 轴
    bar.reversal_axis()
    # 设置每一年的图表的标题
    bar.set_global_opts(
        title_opts=TitleOpts(f"{year}年GDP全球前8国家", pos_left='5%')
    )
    # 将 bar 对象添加到 timeline 中
    timeline.add(bar, year)

# 设置自动播放参数
timeline.add_schema(
    play_interval=1000,      # 自动播放的时间间隔,单位毫秒
    is_timeline_show=True,   # 是否显示自动播放的时候,显示时间线(默认 True)
    is_auto_play=True,       # 是否在自动播放(默认 False)
    is_loop_play=True        # 是否循环自动播放(默认 True)
)

# 通过时间线绘图
timeline.render("1960~2019全球GDP前8国家.html")

到此这篇关于Python pyecharts 数据可视化模块的文章就介绍到这了,更多相关Python pyecharts 数据可视化内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

Python pyecharts 数据可视化模块的配置方法的更多相关文章

  1. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  2. 如何在Xcode 8中启用Visual Memory Debugger?

    我将项目从以前版本的Xcode迁移到Xcode8.我想要的是使用新的可视化内存调试器.它可用于新项目,但在我导入的项目中完全缺少.为什么是这样?

  3. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  4. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  5. Swift - 继承UIView实现自定义可视化组件附记分牌样例

    在iOS开发中,如果创建一个自定义的组件通常可以通过继承UIView来实现。下面以一个记分牌组件为例,演示了组件的创建和使用,以及枚举、协议等相关知识的学习。效果图如下:组件代码:scoreView.swift123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051importUIKitenumscoreType{caseCommon//普通分数面板Best//最高分面板}pr

  6. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  7. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  8. 你没看错:Swift可以直接调用Python函数库

    上周Perfect又推出了新一轮服务器端Swift增强函数库:Perfect-Python。对,你没看错,在服务器端Swift其实可以轻松从其他语种的函数库中直接拿来调用,不需要修改任何内容。以如下python脚本为例:Perfect-Python可以用下列方法封装并调用以上函数,您所需要注意的仅仅是其函数名称以及参数。

  9. Swift中的列表解析

    在Swift中完成这个的最简单的方法是什么?我在寻找类似的东西:从Swift2.x开始,有一些与你的Python样式列表解析相当的东西。(在这个意义上,它更像是Python的xrange。如果你想保持集合懒惰一路通过,只是这样说:与Python中的列表解析语法不同,Swift中的这些操作遵循与其他操作相同的语法。

  10. 使用自动布局可视化格式与Swift?

    我一直在试图使用AutolayoutVisualFormatLanguageinSwift,使用NSLayoutConstraint.constraintsWithVisualFormat。这里有一些例子,没有什么有用的代码,但就我可以告诉应该让类型检查器快乐:但是,这会触发编译器错误:“Cannotconverttheexpression’stype‘[AnyObject]!’totype‘St

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部