前言:

本篇博客要采集的站点:【看历史,通天下-历史剧网】

目标数据是该站点下的热门历史事件,列表页分页规则如下所示:

http://www.lishiju.net/hotevents/p0
http://www.lishiju.net/hotevents/p1
http://www.lishiju.net/hotevents/p2

首先我们通过普通的多线程,对该数据进行采集,由于本文主要目的是学习如何控制并发数,所以每页仅输出历史事件的标题内容。

普通的多线程代码:

import threading
import time
import requests
from bs4 import BeautifulSoup
class MyThread(threading.Thread):
    def __init__(self, url):
        threading.Thread.__init__(self)
        self.__url = url
    def run(self):
        res = requests.get(url=self.__url)
        soup = BeautifulSoup(res.text, 'html.parser')
        title_tags = soup.find_all(attrs={'class': 'item-title'})
        event_names = [item.a.text for item in title_tags]
        print(event_names)
        print("")
if __name__ == "__main__":
    start_time = time.perf_counter()
    threads = []
    for i in range(111):  # 创建了110个线程。
        threads.append(MyThread(url="http://www.lishiju.net/hotevents/p{}".format(i)))
    for t in threads:
        t.start()  # 启动了110个线程。
    for t in threads:
        t.join()  # 等待线程结束
    print("累计耗时:", time.perf_counter() - start_time)
    # 累计耗时: 1.537718624

上述代码同时开启所有线程,累计耗时 1.5 秒,程序采集结束。

多线程之信号量

python 信号量(Semaphore)用来控制线程并发数,信号量管理一个内置的计数器。 信号量对象每次调用其 acquire()方法时,信号量计数器执行 -1 操作,调用 release()方法,计数器执行  1 操作,当计数器等于 0 时,acquire()方法会阻塞线程,一直等到其它线程调用 release()后,计数器重新  1,线程的阻塞才会解除。

使用 threading.Semaphore()创建一个信号量对象。

修改上述并发代码:

import threading
import time
import requests
from bs4 import BeautifulSoup
class MyThread(threading.Thread):
    def __init__(self, url):
        threading.Thread.__init__(self)
        self.__url = url
    def run(self):
        if semaphore.acquire():  # 计数器 -1
            print("正在采集:", self.__url)
            res = requests.get(url=self.__url)
            soup = BeautifulSoup(res.text, 'html.parser')
            title_tags = soup.find_all(attrs={'class': 'item-title'})
            event_names = [item.a.text for item in title_tags]
            print(event_names)
            print("")
            semaphore.release()  # 计数器  1
if __name__ == "__main__":
    semaphore = threading.Semaphore(5)  # 控制每次最多执行 5 个线程
    start_time = time.perf_counter()
    threads = []
    for i in range(111):  # 创建了110个线程。
        threads.append(MyThread(url="http://www.lishiju.net/hotevents/p{}".format(i)))
    for t in threads:
        t.start()  # 启动了110个线程。
    for t in threads:
        t.join()  # 等待线程结束
    print("累计耗时:", time.perf_counter() - start_time)
    # 累计耗时: 2.8005530640000003

当控制并发线程数量之后,累计耗时变多。

补充知识点之 GIL:

GIL是 python 里面的全局解释器锁(互斥锁),在同一进程,同一时间下,只能运行一个线程,这就导致了同一个进程下多个线程,只能实现并发而不能实现并行

需要注意 python 语言并没有全局解释锁,只是因为历史的原因,在 CPython解析器中,无法移除 GIL,所以使用 CPython解析器,是会受到互斥锁影响的。

还有一点是在编写爬虫程序时,多线程比单线程性能是有所提升的,因为遇到 I/O 阻塞会自动释放 GIL锁。

协程中使用信号量控制并发

下面将信号量管理并发数,应用到协程代码中,在正式编写前,使用协程写法重构上述代码。

import time
import asyncio
import aiohttp
from bs4 import BeautifulSoup
async def get_title(url):
    print("正在采集:", url)
    async with aiohttp.request('GET', url) as res:
        html = await res.text()
        soup = BeautifulSoup(html, 'html.parser')
        title_tags = soup.find_all(attrs={'class': 'item-title'})
        event_names = [item.a.text for item in title_tags]
        print(event_names)
async def main():
    tasks = [asyncio.ensure_future(get_title("http://www.lishiju.net/hotevents/p{}".format(i))) for i in range(111)]
    dones, pendings = await asyncio.wait(tasks)
    # for task in dones:
    #     print(len(task.result()))
if __name__ == '__main__':
    start_time = time.perf_counter()
    asyncio.run(main())
    print("代码运行时间为:", time.perf_counter() - start_time)
    # 代码运行时间为: 1.6422313430000002

代码一次性并发 110 个协程,耗时 1.6 秒执行完毕,接下来就对上述代码,增加信号量管理代码。

核心代码是 semaphore = asyncio.Semaphore(10),控制事件循环中并发的协程数量。

import time
import asyncio
import aiohttp
from bs4 import BeautifulSoup
async def get_title(semaphore, url):
    async with semaphore:
        print("正在采集:", url)
        async with aiohttp.request('GET', url) as res:
            html = await res.text()
            soup = BeautifulSoup(html, 'html.parser')
            title_tags = soup.find_all(attrs={'class': 'item-title'})
            event_names = [item.a.text for item in title_tags]
            print(event_names)
async def main():
    semaphore = asyncio.Semaphore(10)  # 控制每次最多执行 10 个线程
    tasks = [asyncio.ensure_future(get_title(semaphore, "http://www.lishiju.net/hotevents/p{}".format(i))) for i in
             range(111)]
    dones, pendings = await asyncio.wait(tasks)
    # for task in dones:
    #     print(len(task.result()))
if __name__ == '__main__':
    start_time = time.perf_counter()
    asyncio.run(main())
    print("代码运行时间为:", time.perf_counter() - start_time)
    # 代码运行时间为: 2.227831242

aiohttp 中 TCPConnector 连接池

既然上述代码已经用到了 aiohttp 模块,该模块下通过限制同时连接数,也可以控制线程并发数量,不过这个不是很好验证,所以从数据上进行验证,先设置控制并发数为 2,测试代码运行时间为 5.56 秒,然后修改并发数为 10,得到的时间为 1.4 秒,与协程信号量控制并发数得到的时间一致。所以使用 TCPConnector 连接池控制并发数也是有效的。

import time
import asyncio
import aiohttp
from bs4 import BeautifulSoup
async def get_title(session, url):
    async with session.get(url) as res:
        print("正在采集:", url)
        html = await res.text()
        soup = BeautifulSoup(html, 'html.parser')
        title_tags = soup.find_all(attrs={'class': 'item-title'})
        event_names = [item.a.text for item in title_tags]
        print(event_names)
async def main():
    connector = aiohttp.TCPConnector(limit=1)  # 限制同时连接数
    async with aiohttp.ClientSession(connector=connector) as session:
        tasks = [asyncio.ensure_future(get_title(session, "http://www.lishiju.net/hotevents/p{}".format(i))) for i in
                 range(111)]
        await asyncio.wait(tasks)
if __name__ == '__main__':
    start_time = time.perf_counter()
    asyncio.run(main())
    print("代码运行时间为:", time.perf_counter() - start_time)

到此这篇关于python 协程并发数控制的文章就介绍到这了,更多相关python 协程内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

python 协程并发数控制的更多相关文章

  1. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  2. ios – 为自定义创建的串行异步队列设置优先级

    如何使用GCD为自定义创建的串行异步队列设置高优先级?如果是这样,什么是替代解决方案?解决方法您的队列仍然是串行的.它只会在高优先级全局并发后台队列的一个插槽中一次执行一项任务.一旦创建,串行队列就不能以任何方式“并发”.同样,如果您创建并发队列并将其设置为以串行队列为目标,则它实际上变为串行.这一切都在manpage中有所涉及.

  3. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  4. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  5. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  6. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  7. 你没看错:Swift可以直接调用Python函数库

    上周Perfect又推出了新一轮服务器端Swift增强函数库:Perfect-Python。对,你没看错,在服务器端Swift其实可以轻松从其他语种的函数库中直接拿来调用,不需要修改任何内容。以如下python脚本为例:Perfect-Python可以用下列方法封装并调用以上函数,您所需要注意的仅仅是其函数名称以及参数。

  8. Swift中的列表解析

    在Swift中完成这个的最简单的方法是什么?我在寻找类似的东西:从Swift2.x开始,有一些与你的Python样式列表解析相当的东西。(在这个意义上,它更像是Python的xrange。如果你想保持集合懒惰一路通过,只是这样说:与Python中的列表解析语法不同,Swift中的这些操作遵循与其他操作相同的语法。

  9. swift抛出终端的python错误

    每当我尝试启动与python相关的swift时,我都会收到错误.我该如何解决?

  10. 在Android上用Java嵌入Python

    解决方法看看this,它适用于J2SE,你可以尝试在Android上运行.

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部