dropna() 方法过滤任何含有缺失值的行

pandas.DataFrame里,如果一行数据有任意值为空,则过滤掉整行,这时候使用dropna()方法是合适的。下面的案例,任意列只要有一个为空数据,则整行都干掉。但是我们常常遇到的情况,是根据一个指标(一列)数据的情况,去过滤行数据,类似Excel里面的过滤漏斗,怎么办?

>>> import pandas as pd
>>> data = pd.DataFrame([[1.,6.5,3.],[1.],[],[6.5,3.]],index=list('abcd'),columns=list('def'))
>>> data
     d    e    f
a  1.0  6.5  3.0
b  1.0  NaN  NaN
c  NaN  NaN  NaN
d  6.5  3.0  NaN
>>> data.dropna() #任意列只要有一个为空数据,则整行都干掉
     d    e    f
a  1.0  6.5  3.0

方法一:dropna() 其他参数解析

原文链接,我们引入了dropna()方法的其他参数。

DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)

参数说明:

  • axis:
    • axis=0: 删除包含缺失值的行
    • axis=1: 删除包含缺失值的列
  • how: 与axis配合使用
    • how=‘any’ :只要有缺失值出现,就删除该行或列
    • how=‘all’: 所有的值都缺失,才删除行或列
  • thresh: axis中至少有thresh个非缺失值,否则删除。比如 axis=0,thresh=10:标识如果该行中非缺失值的数量小于10,将删除改行
  • subset: list,在哪些列中查看是否有缺失值
  • inplace: 是否在原数据上操作。如果为真,返回None,否则返回新的copy,去掉了缺失值
>>> data.dropna(axis=0,subset=['e'])  #axis=0,删除行,在subset的列中进行查看
     d    e    f
a  1.0  6.5  3.0
d  6.5  3.0  NaN

方法二:替换并删除,Python pandas 如果某列值为空,过滤删除所在行数据

如上面的data数据,如果希望“e”列数值为空NaN时,删除对应行也就是“b、c”行数据,保留其他行,用dropna()似乎比较麻烦。 这个时候的思路是:

  • fillna()给空值填充一个数值(如999999)
  • index.tolist()找出值为填充值所在行的索引
  • drop根据索引干掉对应的行
>>> data['e']=data['e'].fillna(999999)
>>> find_index=data[(data.e==999999)].index.tolist()
>>> find_index
['b', 'c']
>>> data.drop(find_index)
     d    e    f
a  1.0  6.5  3.0
d  6.5  3.0  NaN

总结

到此这篇关于python pandas数据处理之删除特定行与列的文章就介绍到这了,更多相关python pandas删除特定行列内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

python pandas数据处理之删除特定行与列的更多相关文章

  1. Pandas如何将表格的前几行生成html实战案例

    这篇文章主要介绍了Pandas如何将表格的前几行生成html实战案例,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下

  2. pandas如何计算同比环比增长

    这篇文章主要介绍了pandas如何计算同比环比增长,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  3. python sklearn与pandas实现缺失值数据预处理流程详解

    对于缺失值的处理,主要配合使用sklearn.impute中的SimpleImputer类、pandas、numpy。其中由于pandas对于数据探索、分析和探查的支持较为良好,因此围绕pandas的缺失值处理较为常用

  4. Ubuntu彻底删除PHP7.0的方法

    这篇文章主要介绍了Ubuntu彻底删除PHP7.0的方法,非常不错,具有一定的参考借鉴价值,需要的朋友可以参考下

  5. angularJS实现动态添加,删除div方法

    下面小编就为大家分享一篇angularJS实现动态添加,删除div方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

  6. Python实现删除windows下的长路径文件

    这篇文章主要为大家详细介绍一下如何利用Python语言实现删除windows下的长路径文件功能,文中的示例代码讲解详细,具有一定参考借鉴价值,感兴趣的可以了解一下

  7. Python使用pandas将表格数据进行处理

    这篇文章主要介绍了Python使用pandas将表格数据进行处理,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感兴趣的小伙伴可以参考一下

  8. php 删除指定文件夹的实例讲解

    下面小编就为大家带来一篇php 删除指定文件夹的实例讲解。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧

  9. AngularJS动态添加数据并删除的实例

    下面小编就为大家分享一篇AngularJS动态添加数据并删除的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

  10. pandas数据类型之Series的具体使用

    本文主要介绍了pandas数据类型之Series的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部