skimage包的exposure模块

图像亮度与对比度的调整,是放在skimage包的exposure模块里面

1、gamma调整

对原图像的像素,进行幂运算,得到新的像素值。公式中的g就是gamma值。

如果gamma>1, 新图像比原图像暗

如果gamma<1,新图像比原图像亮

函数格式为:skimage.exposure.adjust_gamma(image, gamma=1)

gamma参数默认为1,原像不发生变化 。

from skimage import data, exposure, img_as_float
import matplotlib.pyplot as plt
image = img_as_float(data.moon())
gam1= exposure.adjust_gamma(image, 2)   #调暗
gam2= exposure.adjust_gamma(image, 0.5)  #调亮
plt.figure('adjust_gamma',figsize=(8,8))
plt.subplot(131)
plt.title('origin image')
plt.imshow(image,plt.cm.gray)
plt.axis('off')
plt.subplot(132)
plt.title('gamma=2')
plt.imshow(gam1,plt.cm.gray)
plt.axis('off')
plt.subplot(133)
plt.title('gamma=0.5')
plt.imshow(gam2,plt.cm.gray)
plt.axis('off')
plt.show()

2、log对数调整

这个刚好和gamma相反

原理:I=log(I)

from skimage import data, exposure, img_as_float
import matplotlib.pyplot as plt
image = img_as_float(data.moon())
gam1= exposure.adjust_log(image)   #对数调整
plt.figure('adjust_gamma',figsize=(8,8))
plt.subplot(121)
plt.title('origin image')
plt.imshow(image,plt.cm.gray)
plt.axis('off')
plt.subplot(122)
plt.title('log')
plt.imshow(gam1,plt.cm.gray)
plt.axis('off')
plt.show()

3、判断图像对比度是否偏低

函数:is_low_contrast(img)

返回一个bool型值

from skimage import data, exposure
image =data.moon()
result=exposure.is_low_contrast(image)
print(result)

输出为False

4、调整强度

函数:

skimage.exposure.rescale_intensity(image, in_range='image', out_range='dtype')

in_range 表示输入图片的强度范围,默认为'image', 表示用图像的最大/最小像素值作为范围

out_range 表示输出图片的强度范围,默认为'dype', 表示用图像的类型的最大/最小值作为范围

默认情况下,输入图片的[min,max]范围被拉伸到[dtype.min, dtype.max],如果

dtype=uint8, 那么dtype.min=0, dtype.max=255

import numpy as np
from skimage import exposure
image = np.array([51, 102, 153], dtype=np.uint8)
mat=exposure.rescale_intensity(image)
print(mat)

输出为[  0 127 255]

即像素最小值由51变为0,最大值由153变为255,整体进行了拉伸,但是数据类型没有变,还是uint8

前面我们讲过,可以通过img_as_float()函数将unit8类型转换为float型,实际上还有更简单的方法,就是乘以1.0

import numpy as np
image = np.array([51, 102, 153], dtype=np.uint8)
print(image*1.0)

即由[51,102,153]变成了[  51.  102.  153.]

而float类型的范围是[0,1],因此对float进行rescale_intensity 调整后,范围变为[0,1],而不是[0,255]

import numpy as np
from skimage import exposure
image = np.array([51, 102, 153], dtype=np.uint8)
tmp=image*1.0
mat=exposure.rescale_intensity(tmp)
print(mat)

结果为[ 0. &nbsp; 0.5  1. ]

如果原始像素值不想被拉伸,只是等比例缩小,就使用in_range参数,如:

import numpy as np
from skimage import exposure
image = np.array([51, 102, 153], dtype=np.uint8)
tmp=image*1.0
mat=exposure.rescale_intensity(tmp,in_range=(0,255))
print(mat)

输出为:[ 0.2  0.4  0.6],即原像素值除以255

如果参数in_range的[main,max]范围要比原始像素值的范围[min,max] 大或者小,那就进行裁剪,如:

mat=exposure.rescale_intensity(tmp,in_range=(0,102))
print(mat)

输出[ 0.5  1.   1. ],即原像素值除以102,超出1的变为1

如果一个数组里面有负数,现在想调整到正数,就使用out_range参数。如:

import numpy as np
from skimage import exposure
image = np.array([-10, 0, 10], dtype=np.int8)
mat=exposure.rescale_intensity(image, out_range=(0, 127))
print(mat)

输出[  0  63 127]

以上就是python数字图像处理之对比度与亮度调整示例的详细内容,更多关于python数字图像对比度亮度调整的资料请关注Devmax其它相关文章!

python数字图像处理之对比度与亮度调整示例的更多相关文章

  1. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  2. 有没有办法检查iOS中的辅助功能设置中是否启用了“增加对比度”?

    在iOS7.0.3上打开增加对比度模式会消除您通常在导航栏中看到的模糊效果,如果您使用的是α小于1.0的条形色调,这会使导航条看起来比它更透明使用默认设置.有没有办法以编程方式检查是否启用此设置?

  3. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  4. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  5. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  6. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  7. 你没看错:Swift可以直接调用Python函数库

    上周Perfect又推出了新一轮服务器端Swift增强函数库:Perfect-Python。对,你没看错,在服务器端Swift其实可以轻松从其他语种的函数库中直接拿来调用,不需要修改任何内容。以如下python脚本为例:Perfect-Python可以用下列方法封装并调用以上函数,您所需要注意的仅仅是其函数名称以及参数。

  8. Swift中的列表解析

    在Swift中完成这个的最简单的方法是什么?我在寻找类似的东西:从Swift2.x开始,有一些与你的Python样式列表解析相当的东西。(在这个意义上,它更像是Python的xrange。如果你想保持集合懒惰一路通过,只是这样说:与Python中的列表解析语法不同,Swift中的这些操作遵循与其他操作相同的语法。

  9. swift抛出终端的python错误

    每当我尝试启动与python相关的swift时,我都会收到错误.我该如何解决?

  10. 在Android上用Java嵌入Python

    解决方法看看this,它适用于J2SE,你可以尝试在Android上运行.

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部