引言

所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe卷积神经网络数据层及参数

本文只讲解视觉层(Vision Layers)的参数,视觉层包括Convolution, Pooling,Local Response Normalization (LRN), im2col等层。

1、Convolution层:

就是卷积层,是卷积神经网络(CNN)的核心层。

层类型:Convolution

lr_mult: 学习率的系数,最终的学习率是这个数乘以solver.prototxt配置文件中的base_lr。

如果有两个lr_mult, 则第一个表示权值的学习率,第二个表示偏置项的学习率。一般偏置项的学习率是权值学习率的两倍。

在后面的convolution_param中,我们可以设定卷积层的特有参数。

必须设置的参数:

  • num_output: 卷积核(filter)的个数
  • kernel_size: 卷积核的大小。如果卷积核的长和宽不等,需要用kernel_h和kernel_w分别设定

其它参数:

  • stride: 卷积核的步长,默认为1。也可以用stride_h和stride_w来设置。
  • pad: 扩充边缘,默认为0,不扩充。 扩充的时候是左右、上下对称的,比如卷积核的大小为5*5,那么pad设置为2,则四个边缘都扩充2个像素,即宽度和高度都扩充了4个像素,这样卷积运算之后的特征图就不会变小。也可以通过pad_h和pad_w来分别设定。
  • weight_filler: 权值初始化。 默认为“constant",值全为0,很多时候我们用"xavier"算法来进行初始化,也可以设置为”gaussian"
  • bias_filler: 偏置项的初始化。一般设置为"constant",值全为0。
  • bias_term: 是否开启偏置项,默认为true, 开启

group: 分组,默认为1组。如果大于1,我们限制卷积的连接操作在一个子集内。如果我们根据图像的通道来分组,那么第i个输出分组只能与第i个输入分组进行连接。

如果设置stride为1,前后两次卷积部分存在重叠。如果设置pad=(kernel_size-1)/2,则运算后,宽度和高度不变。

示例:

layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 20
    kernel_size: 5
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}

2、Pooling层

也叫池化层,为了减少运算量和数据维度而设置的一种层。

层类型:Pooling

必须设置的参数:

kernel_size: 池化的核大小。也可以用kernel_h和kernel_w分别设定。

其它参数:

  • pool: 池化方法,默认为MAX。目前可用的方法有MAX, AVE, 或STOCHASTIC
  • pad: 和卷积层的pad的一样,进行边缘扩充。默认为0
  • stride: 池化的步长,默认为1。一般我们设置为2,即不重叠。也可以用stride_h和stride_w来设置。

示例:

layer {
  name: "pool1"
  type: "Pooling"
  bottom: "conv1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}

pooling层的运算方法基本是和卷积层是一样的。

如果设置stride为2,前后两次卷积部分不重叠。100*100的特征图池化后,变成50*50.

3、Local Response Normalization (LRN)层

此层是对一个输入的局部区域进行归一化,达到“侧抑制”的效果。可去搜索AlexNet或GoogLenet,里面就用到了这个功能

层类型:LRN

参数:全部为可选,没有必须

  • local_size: 默认为5。如果是跨通道LRN,则表示求和的通道数;如果是在通道内LRN,则表示求和的正方形区域长度。
  • alpha: 默认为1,归一化公式中的参数。
  • beta: 默认为5,归一化公式中的参数。
  • norm_region: 默认为ACROSS_CHANNELS。有两个选择,ACROSS_CHANNELS表示在相邻的通道间求和归一化。WITHIN_CHANNEL表示在一个通道内部特定的区域内进行求和归一化。与前面的local_size参数对应。

归一化公式:对于每一个输入, 去除以

得到归一化后的输出

示例:

layers {
  name: "norm1"
  type: LRN
  bottom: "pool1"
  top: "norm1"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}

4、im2col层

如果对matlab比较熟悉的话,就应该知道im2col是什么意思。它先将一个大矩阵,重叠地划分为多个子矩阵,对每个子矩阵序列化成向量,最后得到另外一个矩阵。

看一看图就知道了:

在caffe中,卷积运算就是先对数据进行im2col操作,再进行内积运算(inner product)。这样做,比原始的卷积操作速度更快。

看看两种卷积操作的异同:

以上就是Caffe卷积神经网络视觉层Vision Layers及参数详解的详细内容,更多关于Caffe视觉层Vision Layers的资料请关注Devmax其它相关文章!

Caffe卷积神经网络视觉层Vision Layers及参数详解的更多相关文章

  1. Caffe卷积神经网络视觉层Vision Layers及参数详解

    这篇文章主要为大家介绍了Caffe卷积神经网络视觉层Vision Layers及参数详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  2. Caffe数据可视化环境python接口配置教程示例

    这篇文章主要为大家介绍了Caffe数据可视化环境python接口配置教程示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  3. Pytorch深度学习经典卷积神经网络resnet模块训练

    这篇文章主要介绍了Pytorch深度学习经典卷积神经网络resnet模块训练,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  4. python人工智能tensorflow构建卷积神经网络CNN

    学习神经网络已经有一段时间,从普通的BP神经网络到LSTM长短期记忆网络都有一定的了解,但是从未系统的把整个神经网络的结构记录下来,我相信这些小记录可以帮助我更加深刻的理解神经网络

  5. caffe的python接口生成配置文件学习

    这篇文章主要介绍了caffe的python接口生成配置文件学习,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  6. caffe的python接口caffemodel参数及特征抽取示例

    这篇文章主要介绍了caffe的python接口caffemodel参数及特征抽取示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  7. python格式的Caffe图片数据均值计算学习

    这篇文章主要为大家介绍了python格式的Caffe图片数据均值计算学习示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  8. Caffe卷积神经网络solver及其配置详解

    这篇文章主要为大家介绍了Caffe卷积神经网络solver及其配置详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  9. caffe的python接口绘制loss和accuracy曲线

    这篇文章主要为大家介绍了caffe的python接口绘制loss和accuracy曲线示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  10. Caffe卷积神经网络数据层及参数

    这篇文章主要为大家介绍了Caffe卷积神经网络数据层及参数示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部