如何生成指定区间中的随机数

要求生成区间[a, b]中的随机数。若要求为浮点数,则Python中只能近似达到这一要求,因为随机函数的取值区间一般都为左闭右开区间,因为只能无限接近b。

若要求为整数,那么将取数区间设置为[a,b 1)即可以取到b了。

具体如下:

1. random()

numpy.random.random(size=None)
  • 生成[0.0, 1.0)的随机数。注意区间是左闭右开,取不到1.0。
  • 生成的是浮点数。
  • 参数size可以用于指定生成随机数的个数和形状。例如
>>>import numpy as np
>>>np.random.random()
0.5312959368718575
>>>np.random.random(5)
array([ 0.2483017 ,  0.86182212,  0.03454678,  0.87525464,  0.31962688])
>>>np.random.random((2,3))
array([[ 0.66214521,  0.40083972,  0.05552421],
       [ 0.51091912,  0.6419505 ,  0.8757311 ]])

利用np.random.random()近似生成[a,b]的随机数,因为前者的取值范围是[0,1),是半开区间,所以右侧端点处的值b取不到。

>>>import numpy as np
>>>a   (b-a)*np.random.random()

2. rand()

numpy.random.rand(d0, d1, …, dn)

它和numpy.random.random(size=None)的主要区别就在于参数。例如生成2*3的array。注意观察参数的形式。

>>>import numpy as np
>>>np.random.random((2,3))
array([[ 0.66214521,  0.40083972,  0.05552421],
       [ 0.51091912,  0.6419505 ,  0.8757311 ]])
>>>np.random.rand(2,3)
array([[ 0.59786635,  0.88902485,  0.7038246 ],
       [ 0.44150109,  0.73660019,  0.70001489]])

3. randint()

生成指定区间的随机整数

numpy.random.randint(low, high=None, size=None, dtype=‘l')
>>> np.random.randint(2,5)
3
>>> np.random.randint(2,5,3)
array([2, 3, 3])
>>> np.random.randint(2,5,9)
array([3, 4, 3, 2, 3, 3, 4, 4, 2])
>>> np.random.randint(2,5,(2,3))
array([[4, 3, 2],
       [3, 3, 4]])

注意:取值的区间仍然是左闭右开区间[low, high)

若要求取[a,b]中的随机数,则

>>>np.random.randint(a, b 1)

python生成随机数总结

生成随机数和随机数操作

Python有自己专门处理随机数的功能,但大家最常用的还是numpy库里的生成随机数功能,因为Python 的 random 没有考虑数组类型的高效数据结构,所以在 array 类型的数据结构时,大家更喜欢直接用 Numpy 来生成,且它的功能更丰富,有各种随机数的生成方式,随机化当前数列,加速等。

Python自带random

import random
print(random.random()) # 随机生成一个0-1之间的随机数,例如0.7679099295136553
print(random.randint(1, 10)) # 随机生成一个1-10之间的整数,如3

numpy库的random

先导入库

import numpy as np

1. np.random.random_integers

numpy.random.random_integers(low, high=None, size=None)
  • 返回随机整数,范围区间为[low,high],包含low和high
  • 参数:low为最小值,high为最大值,size为数组维度大小
  • high没有填写时,默认生成随机数的范围是[1,low]

该函数在最新的numpy版本中已被替代,建议使用randint函数

>>> np.random.random_integers(1,size=5)
array([1, 1, 1, 1, 1])

2. np.random.rand() 或 np.random.random()

# 功能一样,写法有点区别
np.random.rand(d0,d1,…,dn)
np.random.random([d0,d1,…,dn])
  • rand函数根据给定维度,生成[0,1)之间的数据,包含0,不包含1
  • dn:生成维度
  • 返回值为指定维度的array
>>> np.random.rand(4,2)
array([[ 0.02173903,  0.44376568],
       [ 0.25309942,  0.85259262],
       [ 0.56465709,  0.95135013],
       [ 0.14145746,  0.55389458]])
>>> np.random.rand(4,3,2) # shape: 4*3*2
array([[[ 0.08256277,  0.11408276],
        [ 0.11182496,  0.51452019],
        [ 0.09731856,  0.18279204]],
 
       [[ 0.74637005,  0.76065562],
        [ 0.32060311,  0.69410458],
        [ 0.28890543,  0.68532579]],
 
       [[ 0.72110169,  0.52517524],
        [ 0.32876607,  0.66632414],
        [ 0.45762399,  0.49176764]],
 
       [[ 0.73886671,  0.81877121],
        [ 0.03984658,  0.99454548],
        [ 0.18205926,  0.99637823]]])

3. np.random.randn()

numpy.random.randn(d0,d1,…,dn)
  • randn函数返回一个或一组样本,具有标准正态分布(u分布,0为均值、1为标准差的正态分布,记为N(0,1))。
  • dn:维度
  • 返回值为指定维度的array
>>> np.random.randn() # 当没有参数时,返回单个数据
-1.1241580894939212
>>> np.random.randn(2,4)
array([[ 0.27795239, -2.57882503,  0.3817649 ,  1.42367345],
       [-1.16724625, -0.22408299,  0.63006614, -0.41714538]])
       
>>> np.random.randn(4,3,2)
array([[[ 1.27820764,  0.92479163],
        [-0.15151257,  1.3428253 ],
        [-1.30948998,  0.15493686]],
 
       [[-1.49645411, -0.27724089],
        [ 0.71590275,  0.81377671],
        [-0.71833341,  1.61637676]],
 
       [[ 0.52486563, -1.7345101 ],
        [ 1.24456943, -0.10902915],
        [ 1.27292735, -0.00926068]],
 
       [[ 0.88303   ,  0.46116413],
        [ 0.13305507,  2.44968809],
        [-0.73132153, -0.88586716]]])

上面生成的都是小数,下面生成整数

4. np.random.randint()

numpy.random.randint(low, high=None, size=None, dtype='l')

函数作用:返回一个随机整型数或随机数数组,范围从低(闭)到高(开),即[low, high)。

如果没有写参数high的值,则返回[0,low)的值。

参数如下:

  • low: int生成的数值最低要大于等于low。(hign = None时,生成的数值要在[0, low)区间内)
  • high: int (可选)如果使用这个值,则生成的数值在[low, high)区间。
  • size: int or tuple of ints(可选)输出随机数的尺寸,比如size = (m * n* k)则输出同规模即m * n* k个随机数。默认是None的,仅仅返回满足要求的单一随机数。
  • dtype: dtype(可选):想要输出的格式。如int64、int等等

注:范围不对有可能报错 ValueError: low >= high

>>> np.random.randint(2, size=10)
array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0])
>>>np.random.randint(2, high=10, size=(2,3))
array([[6, 8, 7],
       [2, 5, 2]])

5. np.random.choice()

numpy.random.choice(a, size=None, replace=True, p=None)
  • 从给定的一维数组中生成随机数
  • 参数: a为一维数组类似数据或整数;size为数组维度;p为数组中的数据出现的概率|权重
  • a为整数时,对应的一维数组为np.arange(a)
>>> np.random.choice(5,3)
array([4, 1, 4])
>>> np.random.choice(5, 3, replace=False)
# 当replace为False时,生成的随机数不能有重复的数值(放不放回)
array([0, 3, 1])
>>> np.random.choice(5,size=(3,2))
array([[1, 0],
       [4, 2],
       [3, 3]])
       
>>> demo_list = ['lenovo', 'sansumg','moto','xiaomi', 'iphone']
>>> np.random.choice(demo_list,size=(3,3))
array([['moto', 'iphone', 'xiaomi'],
       ['lenovo', 'xiaomi', 'xiaomi'],
       ['xiaomi', 'lenovo', 'iphone']],
      dtype='<U7')
  • 参数p的长度与参数a的长度需要一致;
  • 参数p为概率,p里的数据之和应为1.
>>> demo_list = ['lenovo', 'sansumg','moto','xiaomi', 'iphone']
>>> np.random.choice(demo_list,size=(3,3), p=[0.1,0.6,0.1,0.1,0.1])
array([['sansumg', 'sansumg', 'sansumg'],
       ['sansumg', 'sansumg', 'sansumg'],
       ['sansumg', 'xiaomi', 'iphone']],
      dtype='<U7')

6. np.random.seed()

  • np.random.seed()的作用:使得随机数据可预测。
  • 当我们设置相同的seed,每次生成的随机数相同。如果不设置seed,则每次会生成不同的随机数
  • 当我们把种子seed固定的时候(用一个数字),同一个种子(数字)产生的随机序列就会一样。
>>> np.random.seed(0)
>>> np.random.rand(5)
array([ 0.5488135 ,  0.71518937,  0.60276338,  0.54488318,  0.4236548 ])
>>> np.random.seed(1676)
>>> np.random.rand(5)
array([ 0.39983389,  0.29426895,  0.89541728,  0.71807369,  0.3531823 ])
>>> np.random.seed(1676)
>>> np.random.rand(5)
array([ 0.39983389,  0.29426895,  0.89541728,  0.71807369,  0.3531823 ])    

7. 随机分布

我们在生成数据的时候,有时需要按照特定的统计学分布来生成,比如一个正态分布的抽样数据,或者均匀分布的数据抽样结果,又或者泊松分布等等,都可以用 Numpy 来实现。机器学习中比较常用的 正态分布 和 均匀分布。

# (均值,方差,size)
print("正态分布:", np.random.normal(1, 0.2, 10))
# (最低,最高,size)
print("均匀分布:", np.random.uniform(-1, 1, 10))

8. 打乱功能

np.random.permutation(), 它实现的是 np.random.shuffle() 的一种特殊形式。

可以说是一种简单处理特殊情况的功能。

它有两个方便之处:

  • 1. 直接生成乱序的序列号
  • 2. 对数据乱序

相比 np.random.shuffle(),permutation 有一个好处,就是可以返回一个新数据,对原本的数据没有影响。而且还可以处理多维数据。

np.random.permutation(10)) # 直接出10个乱序数
data = np.arange(12).reshape([6,2])
np.random.permutation(data)) # 将数据在第一维度上打乱

以上为个人经验,希望能给大家一个参考,也希望大家多多支持Devmax。

Python如何生成指定区间中的随机数的更多相关文章

  1. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  2. iOS和Android的常用随机数生成器

    如果我们在两者中都提供相同的种子,我需要一个在iOS和Android中产生相同数字序列的随机数生成器.我用srand(1000)尝试了rand()函数.但它给出了不同的输出.然后我尝试了mersennetwister.但这也为同一种子提供了不同的序列.有谁可以帮我这个.我正在使用cocos2d-x进行开发.解决方法我已经改编了一个在线CRandomMersenne库,我真的很抱歉,我再也找不到那个

  3. Swift - Swift生成随机数

    在Swift中生成随机数有很多方法可以达到目的这里介绍最简单的两种方法,第一种是使用arc4random()函数,第二种是使用arc4random_uniform()函数1.funcarc4random()->UInt32如果要生成一个生成在一定范围内的随机整数,可以这么写:该方法会生成[min,max]范围内的随机整数如果需要生成随机浮点数,基本思路相同,只不过多了一步因为arc4random返

  4. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  5. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  6. Swift 中随机数的使用

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  7. Swift随机数产生

    参考Swifterarc4random是一个十分优秀的随机数算法,并且在Swift中也可以使用。它会返回给我们一个任意整数,我们想要在某个范围里的数的话,可以做模运算取余数就行了。但是Swift的Int是和cpu构架有关的:在32位的cpu上实际上他是Int32,而在64位cpu是Int64。arc4random所返回的值不论在什么平台上都是一个UInt32,于是32位的平台就有几率进行Int转换时越界。

  8. Swift - 使用arc4random()、arc4random_uniform()取得随机数

    arc4random()这个全局函数会生成9位数的随机整数1,下面是使用arc4random函数求一个1~100的随机数1vartemp:Int=Int+12,下面是使用arc4random_uniform函数求一个1~100的随机数temp:Int=Int+1

  9. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  10. 如何在苹果的Swift语言中生成一个随机数?

    我意识到Swift的书提供了一个随机数生成器的实现。最好的做法是在自己的程序中复制和粘贴此实现?还是有一个库,这样做,我们可以使用吗?使用标准库函数来获得高质量的随机数:arc4random()或arc4random_uniform(),就像在Objective-C中一样。它们在Darwin模块中,因此如果您没有导入AppKit,UIKit或Foundation,则需要导入Darwin。

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部