数据集非常大.对于这个例子,假设1000家公司各有100个班次(尽管真实数据集更大).它们都被加载到内存中,我需要对它们运行一个LINQ to Objects查询:
var topShifts =
(from s in shifts
where (from s2 in shifts
where s2.CompanyId == s.CompanyId && s.TimeSlot == s2.TimeSlot
orderby s2.Priority
select s2).First().Equals(s)
select s).ToList();
问题在于,如果没有优化,LINQ to Objects将比较两个集合中的每个对象,进行所有1,000 x 100与1,000 x 100的交叉连接,这相当于100亿(10,000,000)个比较.我想要的是只比较每个公司内的对象(就像公司在sql表中被索引一样).这将产生1000组100×100个对象,总计1000万(10,000)个比较.随着公司数量的增长,后者将线性扩展而不是指数级扩展.
像I4o这样的技术可以让我做这样的事情,但不幸的是,我没有在我正在执行这个查询的环境中使用自定义集合的奢侈.此外,我只希望在任何给定的数据集上运行此查询一次,因此持久索引的值是有限的.我希望使用一种扩展方法,它可以按公司对数据进行分组,然后在每个组上运行表达式.
完整示例代码:
public struct Shift
{
public static long Iterations;
private int companyId;
public int CompanyId
{
get { Iterations++; return companyId; }
set { companyId = value; }
}
public int Id;
public int TimeSlot;
public int Priority;
}
class Program
{
static void Main(string[] args)
{
const int Companies = 1000;
const int Shifts = 100;
Console.WriteLine(string.Format("{0} Companies x {1} Shifts",Companies,Shifts));
var timer = Stopwatch.StartNew();
Console.WriteLine("Populating data");
var shifts = new List<Shift>();
for (int companyId = 0; companyId < Companies; companyId++)
{
for (int shiftId = 0; shiftId < Shifts; shiftId++)
{
shifts.Add(new Shift() { CompanyId = companyId,Id = shiftId,TimeSlot = shiftId / 3,Priority = shiftId % 5 });
}
}
Console.WriteLine(string.Format("Completed in {0:n}ms",timer.ElapsedMilliseconds));
timer.Restart();
Console.WriteLine("Computing Top Shifts");
var topShifts =
(from s in shifts
where (from s2 in shifts
where s2.CompanyId == s.CompanyId && s.TimeSlot == s2.TimeSlot
orderby s2.Priority
select s2).First().Equals(s)
select s).ToList();
Console.WriteLine(string.Format("Completed in {0:n}ms",timer.ElapsedMilliseconds));
timer.Restart();
Console.WriteLine("\nShifts:");
foreach (var shift in shifts.Take(20))
{
Console.WriteLine(string.Format("C {0} Id {1} T {2} P{3}",shift.CompanyId,shift.Id,shift.TimeSlot,shift.Priority));
}
Console.WriteLine("\nTop Shifts:");
foreach (var shift in topShifts.Take(10))
{
Console.WriteLine(string.Format("C {0} Id {1} T {2} P{3}",shift.Priority));
}
Console.WriteLine(string.Format("\nTotal Comparisons: {0:n}",Shift.Iterations/2));
Console.WriteLine("Any key to continue");
Console.ReadKey();
}
}
样本输出:
1000 Companies x 100 Shifts
Populating data
Completed in 10.00ms
Computing Top Shifts
Completed in 520,721.00msShifts:
C 0 Id 0 T 0 P0
C 0 Id 1 T 0 P1
C 0 Id 2 T 0 P2
C 0 Id 3 T 1 P3
C 0 Id 4 T 1 P4
C 0 Id 5 T 1 P0
C 0 Id 6 T 2 P1
C 0 Id 7 T 2 P2
C 0 Id 8 T 2 P3
C 0 Id 9 T 3 P4
C 0 Id 10 T 3 P0
C 0 Id 11 T 3 P1
C 0 Id 12 T 4 P2
C 0 Id 13 T 4 P3
C 0 Id 14 T 4 P4
C 0 Id 15 T 5 P0
C 0 Id 16 T 5 P1
C 0 Id 17 T 5 P2
C 0 Id 18 T 6 P3
C 0 Id 19 T 6 P4Top Shifts:
C 0 Id 0 T 0 P0
C 0 Id 5 T 1 P0
C 0 Id 6 T 2 P1
C 0 Id 10 T 3 P0
C 0 Id 12 T 4 P2
C 0 Id 15 T 5 P0
C 0 Id 20 T 6 P0
C 0 Id 21 T 7 P1
C 0 Id 25 T 8 P0
C 0 Id 27 T 9 P2Total Comparisons: 10,015.00
Any key to continue
问题:
>如何对查询进行分区(同时仍作为单个LinQ查询执行),以便将比较从100亿减少到1000万?
>有没有更有效的方法来解决问题而不是子查询?
解决方法
var topShifts = from s in shifts.GroupBy(s => s.CompanyId)
from a in s.GroupBy(b => b.TimeSlot)
select a.OrderBy(p => p.Priority).First();
似乎得到相同的输出,但100015比较
与@ Geoff的编辑他只是减少了我的比较:-)