apply方法介绍

方法形式为 apply(func, axis=0, raw=False, result_type=None, agrs=(), **kwargs),沿Dataframe的轴应用func函数。

传递给函数的对象是Series对象,当axis=0时,其索引是Dataframe的索引;当axis=1时,其索引是Dataframe的列。

默认情况下,result_type=None,最终返回的类型是从func函数的返回推断出来的,否则它就取决于result_type参数。

参数解析:

  • func:函数,要应用于每一列或每一行的函数。
  • axis:默认为0,0对应行索引,将func函数应用于每一列;1对应列,将函数应用于每一行。
  • raw:布尔值,默认为False,确定行或列是否作为Series或ndarray对象传递。
    • False:将每一行或每一列作为一个Series对象传递给函数;
    • True:函数将接收ndarray对象。
  • result_type:可选值有expand,reduce,broadcast,None,默认为None。
    • 默认为None时,返回结果取决于func函数的返回值,类似列表的结果将返回这些结果组成的Series,如果返回Series,则会将Series扩展为列。
    • expand:在axis=1时其作用,类似列表的结果将变成列。
    • reduce:在axis=1时其作用,如果可以,返回一个Series,而不是扩展类似列表的结果。
    • broadcast:在axis=1时其作用,结果将被广播到Dataframe的原始形状,原始行索引和列将会被保留。
  • args:元组,除了数组和Series之外,要传递给func的位置参数。
  • **kwargs:传递给func的附加关键字参数。

返回:

  • func函数沿Dataframe的给定轴应用的结果。

用例1

导入包

import pandas as pd
import numpy as np
df = pd.DataFrame([[4, 9]]*3,  columns=['A', 'B'])
df

输出:

image-20220426172924956

使用numpy中的通用函数。

df.apply(np.sqrt)   # 相当于np.sqrt(df)

输出:

image-20220426172937375

用例2

在任一轴上应用函数, 返回由类似列表的结果组成的Series。

df.apply(np.sum, axis=0)

输出:

A    12
B    27
dtype: int64

df.apply(np.sum, axis=1)

输出:

0    13
1    13
2    13
dtype: int64

df.apply(lambda x :[1, 2], axis=1)

输出:

0    [1, 2]
1    [1, 2]
2    [1, 2]
dtype: object

用例3

传递result_type=expand,会将类似列表的结果扩展到Dataframe的列。

df.apply(lambda x : [1, 2], axis=1, result_type='expand')

输出:

image-20220426172853152

在func函数内部返回一个Series,和传递result_type=expand相似,Series的索引将作为扩展的列名。

df.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1)

输出:

image-20220426172829809

传递result_type=broadcast,将会返回相同形状的结果,无论是列表还是标量,将沿轴进行广播,列的名称还是原始名称。

df.apply(lambda x: [1, 2], axis=1, result_type='broadcast')

输出:

image-20220426172808560

总结 

到此这篇关于pandas进阶教程之Dataframe的apply方法的文章就介绍到这了,更多相关pandas Dataframe的apply方法内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

pandas进阶教程之Dataframe的apply方法的更多相关文章

  1. Pandas如何将表格的前几行生成html实战案例

    这篇文章主要介绍了Pandas如何将表格的前几行生成html实战案例,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下

  2. pandas如何计算同比环比增长

    这篇文章主要介绍了pandas如何计算同比环比增长,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  3. python sklearn与pandas实现缺失值数据预处理流程详解

    对于缺失值的处理,主要配合使用sklearn.impute中的SimpleImputer类、pandas、numpy。其中由于pandas对于数据探索、分析和探查的支持较为良好,因此围绕pandas的缺失值处理较为常用

  4. Python使用pandas将表格数据进行处理

    这篇文章主要介绍了Python使用pandas将表格数据进行处理,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感兴趣的小伙伴可以参考一下

  5. 分析ES5和ES6的apply区别

    这篇文章主要介绍了分析ES5和ES6的apply区别,对ES6感兴趣的同学,可以参考下

  6. pandas数据类型之Series的具体使用

    本文主要介绍了pandas数据类型之Series的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

  7. 通过5个例子让你学会Pandas中的字符串过滤

    毋庸置疑Pandas是使用最广泛的Python库之一,它提供了许多功能和方法来执行有效的数据处理和数据分析,下面这篇文章主要给大家介绍了关于如何通过5个例子让你学会Pandas中字符串过滤的相关资料,需要的朋友可以参考下

  8. pandas的排序、分组groupby及cumsum累计求和方式

    这篇文章主要介绍了pandas的排序、分组groupby及cumsum累计求和方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  9. Python pandas DataFrame基础运算及空值填充详解

    pandas除了可以drop含有空值的数据之外,当然也可以用来填充空值,下面这篇文章主要给大家介绍了关于Python pandas DataFrame基础运算及空值填充的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下

  10. Python Pandas 中的数据结构详解

    这篇文章主要介绍了Python Pandas 中的数据结构详解,Pandas有三种数据结构Series、DataFrame和Panel,文章围绕主题展开更多相关内容需要的小伙伴可以参考一下

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部