前言

系统自带的数据表格,使用时通过sns.load_dataset('表名称')即可,结果为一个DataFrame。

print(sns.get_dataset_names())   #获取所有数据表名称
# ['anscombe', 'attention', 'brain_networks', 'car_crashes', 'diamonds', 'dots', 'exercise', 'flights', 
# 'fmri', 'gammas', 'iris', 'mpg', 'planets', 'tips', 'titanic']
tips = sns.load_dataset('tips')  #导入小费tips数据表,返回一个DataFrame
tips.head()

一、直方图distplot()

distplot(a, bins=None, hist=True, kde=True, rug=False, fit=None,hist_kws=None, kde_kws=None, rug_kws=None,
fit_kws=None,color=None, vertical=False, norm_hist=False, axlabel=None,label=None, ax=None)
  • a 数据源
  • bins 箱数
  • hist、kde、rug 是否显示箱数、密度曲线、数据分布,默认显示箱数和密度曲线不显示数据分析
  • {hist,kde,rug}_kws 通过字典形式设置箱数、密度曲线、数据分布的各个特征
  • norm_hist 直方图的高度是否显示密度,默认显示计数,如果kde设置为True高度也会显示为密度
  • color 颜色
  • vertical 是否在y轴上显示图标,默认为False即在x轴显示,即竖直显示
  • axlabel 坐标轴标签
  • label 直方图标签
fig = plt.figure(figsize=(12,5))
ax1 = plt.subplot(121)
rs = np.random.RandomState(10)  # 设定随机数种子
s = pd.Series(rs.randn(100) * 100)
sns.distplot(s,bins = 10,hist = True,kde = True,rug = True,norm_hist=False,color = 'y',label = 'distplot',axlabel = 'x')
plt.legend()

ax1 = plt.subplot(122)
sns.distplot(s,rug = True, 
             hist_kws={"histtype": "step", "linewidth": 1,"alpha": 1, "color": "g"},  # 设置箱子的风格、线宽、透明度、颜色,风格包括:'bar', 'barstacked', 'step', 'stepfilled'
             kde_kws={"color": "r", "linewidth": 1, "label": "KDE",'linestyle':'--'},   # 设置密度曲线颜色,线宽,标注、线形
             rug_kws = {'color':'r'} )  # 设置数据频率分布颜色

二、密度图

#密度曲线
kdeplot(data, data2=None, shade=False, vertical=False, kernel="gau",bw="scott", gridsize=100, cut=3, clip=None, 
legend=True,cumulative=False,shade_lowest=True,cbar=False, cbar_ax=None,cbar_kws=None, ax=None, **kwargs)
  • shade 是否填充与坐标轴之间的
  • bw 取值'scott' 、'silverman'或一个数值标量,控制拟合的程度,类似直方图的箱数,设置的数量越大越平滑,越小越容易过度拟合
  • shade_lowest 主要是对两个变量分析时起作用,是否显示最外侧填充颜色,默认显示
  • cbar 是否显示颜色图例
  • n_levels 主要对两个变量分析起作用,数据线的个数

数据分布rugplot(a, height=.05, axis="x", ax=None, **kwargs)

  • height 分布线高度
  • axis {'x','y'},在x轴还是y轴显示数据分布

1.单个样本数据分布密度图 

sns.kdeplot(s,shade = False, color = 'r',vertical = False)# 是否填充、设置颜色、是否水平
sns.kdeplot(s,bw=0.2, label="bw: 0.2",linestyle = '-',linewidth = 1.2,alpha = 0.5)
sns.kdeplot(s,bw=2, label="bw: 2",linestyle = '-',linewidth = 1.2,alpha = 0.5,shade=True)
sns.rugplot(s,height = 0.1,color = 'k',alpha = 0.5)  #数据分布

2.两个样本数据分布密度图

两个维度数据生成曲线密度图,以颜色作为密度衰减显示。

rs = np.random.RandomState(2)  # 设定随机数种子
df = pd.DataFrame(rs.randn(100,2),columns = ['A','B'])
sns.kdeplot(df['A'],df['B'],shade = True,cbar = True,cmap = 'Reds',shade_lowest=True, n_levels = 8)# 曲线个数(如果非常多,则会越平滑) 
plt.grid(linestyle = '--')
plt.scatter(df['A'], df['B'], s=5, alpha = 0.5, color = 'k') #散点
sns.rugplot(df['A'], color="g", axis='x',alpha = 0.5) #x轴数据分布
sns.rugplot(df['B'], color="r", axis='y',alpha = 0.5) #y轴数据分布

rs1 = np.random.RandomState(2)
rs2 = np.random.RandomState(5)
df1 = pd.DataFrame(rs1.randn(100,2) 2,columns = ['A','B'])
df2 = pd.DataFrame(rs2.randn(100,2)-2,columns = ['A','B'])
sns.set_style('darkgrid')
sns.set_context('talk')
sns.kdeplot(df1['A'],df1['B'],cmap = 'Greens',shade = True,shade_lowest=False)
sns.kdeplot(df2['A'],df2['B'],cmap = 'Blues', shade = True,shade_lowest=False)

三、散点图

jointplot() / JointGrid() / pairplot() /pairgrid()

1.jointplot()综合散点图

rs = np.random.RandomState(2)
df = pd.DataFrame(rs.randn(200,2),columns = ['A','B'])

sns.jointplot(x=df['A'], y=df['B'],  # 设置x轴和y轴,显示columns名称
              data=df,   # 设置数据
              color = 'k',   # 设置颜色
              s = 50, edgecolor="w",linewidth=1,  # 设置散点大小、边缘线颜色及宽度(只针对scatter)
              kind = 'scatter',   # 设置类型:“scatter”、“reg”、“resid”、“kde”、“hex”
              space = 0.1,  # 设置散点图和上方、右侧直方图图的间距
              size = 6,   # 图表大小(自动调整为正方形)
              ratio = 3,  # 散点图与直方图高度比,整型
              marginal_kws=dict(bins=15, rug=True,color='green')  # 设置直方图箱数以及是否显示rug
              )

当kind分别设置为其他4种“reg”、“resid”、“kde”、“hex”时,图表如下:

sns.jointplot(x=df['A'], y=df['B'],data=df,kind='reg',size=5)  #
sns.jointplot(x=df['A'], y=df['B'],data=df,kind='resid',size=5) #
sns.jointplot(x=df['A'], y=df['B'],data=df,kind='kde',size=5) #
sns.jointplot(x=df['A'], y=df['B'],data=df,kind='hex',size=5) #蜂窝图

在密度图中添加散点图,先通过sns.jointplot()创建密度图并赋值给变量,再通过变量.plot_joint()在密度图中添加散点图。

rs = np.random.RandomState(15)
df = pd.DataFrame(rs.randn(300,2),columns = ['A','B'])
g = sns.jointplot(x=df['A'], y=df['B'],data = df, kind="kde", color="pink",shade_lowest=False) #密度图,并赋值给一个变量
g.plot_joint(plt.scatter,c="w", s=30, linewidth=1, marker=" ")  #在密度图中添加散点图

2.拆分综合散点图JointGrid() 

上述综合散点图可分为上、右、中间三部分,设置属性时对这三个参数都生效,JointGrid()可将这三部分拆开分别设置属性。

①拆分为中间 上&右 两部分设置

# plot_joint()   plot_marginals()
g = sns.JointGrid(x="total_bill", y="tip", data=tips)# 创建一个绘图区域,并设置好x、y对应数据
g = g.plot_joint(plt.scatter,color="g", s=40, edgecolor="white")   # 中间区域通过g.plot_joint绘制散点图
plt.grid('--')

g.plot_marginals(sns.distplot, kde=True, color="y")     #
h = sns.JointGrid(x="total_bill", y="tip", data=tips)# 创建一个绘图区域,并设置好x、y对应数据
h = h.plot_joint(sns.kdeplot,cmap = 'Reds_r')   # 中间区域通过g.plot_joint绘制散点图
plt.grid('--')
h.plot_marginals(sns.kdeplot, color="b")

②拆分为中间 上 右三个部分分别设置

# plot_joint()   ax_marg_x.hist()   ax_marg_y.hist()

sns.set_style("white")# 设置风格
tips = sns.load_dataset("tips") # 导入系统的小费数据
print(tips.head())
g = sns.JointGrid(x="total_bill", y="tip", data=tips)# 创建绘图区域,设置好x、y对应数据

g.plot_joint(plt.scatter, color ='y', edgecolor = 'white')  # 设置内部散点图scatter
g.ax_marg_x.hist(tips["total_bill"], color="b", alpha=.6,bins=np.arange(0, 60, 3))  # 设置x轴直方图,注意bins是数组
g.ax_marg_y.hist(tips["tip"], color="r", alpha=.6, orientation="horizontal", bins=np.arange(0, 12, 1)) # 设置y轴直方图,需要orientation参数

from scipy import stats
g.annotate(stats.pearsonr)  # 设置标注,可以为pearsonr,spearmanr
plt.grid(linestyle = '--')

3.pairplot()矩阵散点图

矩阵散点图类似pandas的pd.plotting.scatter_matrix(...),将数据从多个维度进行两两对比。

对角线默认显示密度图,非对角线默认显示散点图。

sns.set_style("white")
iris = sns.load_dataset("iris")
print(iris.head())
sns.pairplot(iris,
            kind = 'scatter',  # 散点图/回归分布图 {‘scatter', ‘reg'}
            diag_kind="hist",  # 对角线处直方图/密度图 {‘hist', ‘kde'}
            hue="species",   # 按照某一字段进行分类
            palette="husl",  # 设置调色板
            markers=["o", "s", "D"],  # 设置不同系列的点样式(个数与hue分类的个数一致)
            height = 1.5,   # 图表大小
            )

对原数据的局部变量进行分析,可添加参数vars

sns.pairplot(iris,vars=["sepal_width", "sepal_length"], kind = 'reg', diag_kind="kde", hue="species", palette="husl")

plot_kws()和diag_kws()可分别设置对角线和非对角线的显示:

sns.pairplot(iris, vars=["sepal_length", "petal_length"],diag_kind="kde", markers=" ",
             plot_kws=dict(s=50, edgecolor="b", linewidth=1),# 设置非对角线点样式
             diag_kws=dict(shade=True,color='r',linewidth=1)# 设置对角线密度图样式
            )

4.拆分综合散点图JointGrid() 

类似JointGrid()的功能,将矩阵散点图拆分为对角线和非对角线图表分别设置显示属性。

①拆分为对角线和非对角线

# map_diag()   map_offdiag()

g = sns.PairGrid(iris,hue="species",palette = 'hls',vars=["sepal_width", "sepal_length"])
g.map_diag(plt.hist, # 对角线图表,plt.hist/sns.kdeplot
           histtype = 'barstacked',   # 可选:'bar', 'barstacked', 'step', 'stepfilled'
           linewidth = 1, edgecolor = 'gray')
g.map_offdiag(plt.scatter, # f非对角线其他图表,plt.scatter/plt.bar...
              edgecolor="yellow", s=20, linewidth = 1,   # 设置点颜色、大小、描边宽度)

②拆分为对角线 对角线上 对角线下 3部分设置

# map_diag()   map_lower()   map_upper()
g = sns.PairGrid(iris)
g.map_diag(sns.kdeplot, lw=1.5,color='y',alpha=0.5)   # 设置对角线图表
g.map_upper(plt.scatter, color = 'r',s=8)     # 设置对角线上端图表显示为散点图
g.map_lower(sns.kdeplot,cmap='Blues_r') # 设置对角线下端图表显示为多密度分布图

到此这篇关于Python seaborn数据可视化绘图(直方图,密度图,散点图)的文章就介绍到这了,更多相关Python seaborn 绘图内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

Python seaborn数据可视化绘图(直方图,密度图,散点图)的更多相关文章

  1. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  2. 如何在Xcode 8中启用Visual Memory Debugger?

    我将项目从以前版本的Xcode迁移到Xcode8.我想要的是使用新的可视化内存调试器.它可用于新项目,但在我导入的项目中完全缺少.为什么是这样?

  3. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  4. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  5. Swift - 继承UIView实现自定义可视化组件附记分牌样例

    在iOS开发中,如果创建一个自定义的组件通常可以通过继承UIView来实现。下面以一个记分牌组件为例,演示了组件的创建和使用,以及枚举、协议等相关知识的学习。效果图如下:组件代码:scoreView.swift123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051importUIKitenumscoreType{caseCommon//普通分数面板Best//最高分面板}pr

  6. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  7. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  8. 你没看错:Swift可以直接调用Python函数库

    上周Perfect又推出了新一轮服务器端Swift增强函数库:Perfect-Python。对,你没看错,在服务器端Swift其实可以轻松从其他语种的函数库中直接拿来调用,不需要修改任何内容。以如下python脚本为例:Perfect-Python可以用下列方法封装并调用以上函数,您所需要注意的仅仅是其函数名称以及参数。

  9. Swift中的列表解析

    在Swift中完成这个的最简单的方法是什么?我在寻找类似的东西:从Swift2.x开始,有一些与你的Python样式列表解析相当的东西。(在这个意义上,它更像是Python的xrange。如果你想保持集合懒惰一路通过,只是这样说:与Python中的列表解析语法不同,Swift中的这些操作遵循与其他操作相同的语法。

  10. 使用自动布局可视化格式与Swift?

    我一直在试图使用AutolayoutVisualFormatLanguageinSwift,使用NSLayoutConstraint.constraintsWithVisualFormat。这里有一些例子,没有什么有用的代码,但就我可以告诉应该让类型检查器快乐:但是,这会触发编译器错误:“Cannotconverttheexpression’stype‘[AnyObject]!’totype‘St

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部