我正在将数据集从keras张量转换为numpy数组,以执行K倍交叉验证。我在k折叠中的准确度与之前运行模型相比真的很低。当我查看数据时,我注意到转换后的图像大多是黑色/白色/蓝色,而且很糟糕。是的,它是一只苍蝇
请参见下面的代码。是转换还是显示错误?
train_ds = tf.keras.utils.image_dataset_from_directory( directory ='/gdrive/My Drive/Flies_dt/224x224', validation_split=0.4, subset="training", seed=123, image_size=(224, 224), batch_size=32, shuffle=False) val_ds = tf.keras.utils.image_dataset_from_directory( directory ='/gdrive/My Drive/Flies_dt/224x224', validation_split=0.4, subset="validation", seed=123, image_size=(224, 224), batch_size=32, shuffle=False) train_images = np.concatenate(list(train_ds.map(lambda x, y:x))) train_labels = np.concatenate(list(train_ds.map(lambda x, y:y))) val_images = np.concatenate(list(val_ds.map(lambda x, y:x))) val_labels = np.concatenate(list(val_ds.map(lambda x, y:y))) inputs = np.concatenate((train_images, val_images), axis=0) targets = np.concatenate((train_labels, val_labels), axis=0) from matplotlib import pyplot as plt plt.imshow(inputs[1]) plt.show()