我想为聊天机器人创建一个模型。有一个代码。但是,200个时期的训练导致模型的准确率只有百分之一点五:(。我至少有百分之七十。我给出了下面的代码:`import nltk
nltk.download('punkt')
nltk.download('wordnet')
nltk.download('omw-1.4')
from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
import json
import pickle
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Activation, Dropout
from keras.optimizers import SGD
import random
words=[]
classes = []
documents = []
ignore_words = ['?', '!']
data_file = open('intents.json').read()
intents = json.loads(data_file)
for intent in intents['intents']:
    for pattern in intent['patterns']:
        # take each word and tokenize it
        w = nltk.word_tokenize(pattern)
        words.extend(w)
        # adding documents
        documents.append((w, intent['tag']))
        # adding classes to our class list
        if intent['tag'] not in classes:
            classes.append(intent['tag'])
words = [lemmatizer.lemmatize(w.lower()) for w in words if w not in ignore_words]
words = sorted(list(set(words)))
classes = sorted(list(set(classes)))
print (len(documents), "documents")
print (len(classes), "classes", classes)
print (len(words), "unique lemmatized words", words)
pickle.dump(words,open('words.pkl','wb'))
pickle.dump(classes,open('classes.pkl','wb'))
# initializing training data
training = []
output_empty = [0] * len(classes)
for doc in documents:
    # initializing bag of words
    bag = []
    # list of tokenized words for the pattern
    pattern_words = doc[0]
    # lemmatize each word - create base word, in attempt to represent related words
    pattern_words = [lemmatizer.lemmatize(word.lower()) for word in pattern_words]
    # create our bag of words array with 1, if word match found in current pattern
    for w in words:
        bag.append(1) if w in pattern_words else bag.append(0)
    # output is a '0' for each tag and '1' for current tag (for each pattern)
    output_row = list(output_empty)
    output_row[classes.index(doc[1])] = 1
    training.append([bag, output_row])
# shuffle our features and turn into np.array
random.shuffle(training)
training = np.array(training)
# create train and test lists. X - patterns, Y - intents
train_x = list(training[:,0])
train_y = list(training[:,1])
打印(“创建的培训数据”)
# Create model - 3 layers. First layer 128 neurons, second layer 64 neurons and 3rd output layer contains number of neurons
# equal to number of intents to predict output intent with softmax
model = Sequential()
model.add(Dense(128, input_shape=(len(train_x[0]),), activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(len(train_y[0]), activation='softmax'))
# Compile model. Stochastic gradient descent with Nesterov accelerated gradient gives good results for this model
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
#fitting and saving the model
hist = model.fit(np.array(train_x), np.array(train_y), epochs=200, batch_size=5, verbose=1)
model.save('chatbot_model.h5', hist)
print("model created")`
我认为这是因为庞大的培训数据库。当我在数据库中有大约30个训练短语时,预测值为90-100%。但当我将数据库增加到400-450个短语时,结果是百分之一点五的预测。但也许教学方法不好?我不知道该怎么想了。很可能是一个数据库。