1、两个函数介绍

总得来说,connectedComponents()仅仅创建了一个标记图(图中不同连通域使用不同的标记,和原图宽高一致),connectedComponentsWithStats()可以完成上面任务,除此之外,还可以返回每个连通区域的重要信息–bounding box, area, andcentroid。

1.1什么是连通域

连通区域一般是指图像中具有相同像素值且位置相邻的前景像素点组成的图像区域。连通区域分析是指将图像中的各个连通区域找出并标记。

连通区域分析是一种在CVPR和图像分析处理的众多应用领域中较为常用和基本的方法。

例如:OCR识别中字符分割提取(车牌识别、文本识别、字幕识别等)、视觉跟踪中的运动前景目标分割与提取(行人入侵检测、遗留物体检测、基于视觉的车辆检测与跟踪等)、医学图像处理(感兴趣目标区域提取)、等等。也就是说,在需要将前景目标提取出来以便后续进行处理的应用场景中都能够用到连通区域分析方法,通常连通区域分析处理的对象是一张二值化后的图像。

1.2 cv2.connectedComponents()

函数各参数意义:

num_objects, labels = cv2.connectedComponents(image)

参数介绍如下: 

image:也就是输入图像,必须是二值图,即8位单通道图像。(因此输入图像必须先进行二值化处理才能被这个函数接受)

返回值: 

num_labels:所有连通域的数目

labels:图像上每一像素的标记,用数字1、2、3…表示(不同的数字表示不同的连通域)

1.3 cv2.connectedComponentsWithStats()

这个函数的作用是对一幅图像进行连通域提取,并返回找到的连通域的信息:retval、labels、stats、centroids

num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(image, connectivity=8, ltype=None)

参数介绍如下: 

  • image:也就是输入图像,必须是二值图,即8位单通道图像。(因此输入图像必须先进行二值化处理才能被这个函数接受) 
  • connectivity:可选值为4或8,也就是使用4连通还是8连通。 
  • ltype:输出图像标记的类型,目前支持CV_32S 和 CV_16U。

返回值:

  • num_labels:所有连通域的数目 
  • labels:图像上每一像素的标记,用数字1、2、3…表示(不同的数字表示不同的连通域) 
  • stats:每一个标记的统计信息,是一个5列的矩阵,每一行对应每个连通区域的外接矩形的x、y、width、height和面积,示例如下: 0 0 720 720 291805 
  • centroids:连通域的中心点

2、代码实践

两个代码的用处是共通的,cv2.connectedComponentsWithStats函数返回的信息量更大,所以这里展示它的应用。

import cv2
import numpy as np
# 读入图片
img = cv2.imread("001.jpg")
# 中值滤波,去噪
img = cv2.medianBlur(img, 3)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cv2.namedWindow('original', cv2.WINDOW_AUTOSIZE)
cv2.imshow('original', gray)
# 阈值分割得到二值化图片
ret, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
# 膨胀操作
kernel2 = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
bin_clo = cv2.dilate(binary, kernel2, iterations=2)
# 连通域分析
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(bin_clo, connectivity=8)
# 查看各个返回值
# 连通域数量
print('num_labels = ',num_labels)
# 连通域的信息:对应各个轮廓的x、y、width、height和面积
print('stats = ',stats)
# 连通域的中心点
print('centroids = ',centroids)
# 每一个像素的标签1、2、3.。。,同一个连通域的标签是一致的
print('labels = ',labels)
# 不同的连通域赋予不同的颜色
output = np.zeros((img.shape[0], img.shape[1], 3), np.uint8)
for i in range(1, num_labels):
    mask = labels == i
    output[:, :, 0][mask] = np.random.randint(0, 255)
    output[:, :, 1][mask] = np.random.randint(0, 255)
    output[:, :, 2][mask] = np.random.randint(0, 255)
cv2.imshow('oginal', output)
cv2.waitKey()
cv2.destroyAllWindows()

打印出的连通域的信息如下: 

重点是理解stats和 labels 参数的意义,其他的参数都容易理解: 

labels :对原始图中的每一个像素都打上标签,背景为0,连通域打上1,2,3。。。的标签,同一个连通域的像素打上同样的标签。相当与对每一个像素进行了分类(分割) 

stats:每一连通域的信息,表示每个连通区域的外接矩形(起始点的x、y、宽和高)和面积

 

连通域检测的效果图:

3、总结

(1)连通域分析可以实现将前景目标提取出来以便后续进行处理(类似于轮廓处理)

(2)重点是cv2.connectedComponentsWithStats函数中stats和 labels 参数的意义 

labels :对原始图中的每一个像素都打上标签,背景为0,连通域打上1,2,3。。。的标签,同一个连通域的像素打上同样的标签。相当与对每一个像素进行了分类(分割) 

stats:每一连通域的信息,表示每个连通区域的外接矩形(起始点的x、y、宽和高)和面积

(3)从上面的例子可以看出,因物体有重叠会把不同物体的多个连通域 计为一个连通域,所以在连通域分析前可以先进行效果更好的分割和预处理操作。

以上就是OpenCV学习记录python实现连通域处理函数的详细内容,更多关于python opencv连通域处理函数的资料请关注Devmax其它相关文章!

OpenCV学习记录python实现连通域处理函数的更多相关文章

  1. iOS使用openCV检测来自摄像头的矩形

    如果我在处理它之前克隆matimage,通过记录它,它似乎处理图像甚至找到矩形,但矩形不会被绘制到图像输出到imageView.我很确定我错过了一些东西,可能是因为我没有正确传递某个对象,指向对象的指针等等,而我需要修改的对象则没有.无论如何,如果这不是正确的方法,我真的很感谢他们做这样的事情的教程或例子,使用openCV或GPUImage…它不需要尝试使用matimage来设置imageView.image,而只需要将matimage转换为在imageView中实际修改,因为CvVideoCamera已

  2. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  3. 使用Xcode为OS X Lion / Mountain Lion编译OpenCV(2.3.1)

    任何人都可以为我提供一些如何使用Xcode在OSXLion上编译OpenCV2.3.1的详细指南吗?我对此感到生气…我得到了源码,使用cmake创建Xcode模板并尝试构建它,但它失败了大约200个错误.提前致谢,大教堂解答我的回答帖子.解决方法详细指南如何使用MacPorts在Xcode4.2.1的OSXLion下启动和运行OpenCV2.3.1编辑08/06/2012:这也适用于OpenCV2.4.1.只需确保您获得最新版本的Xcode并安装“命令行工具”.编辑15/08/2012:使用Mountai

  4. ios – OpenCV构建问题,找不到ext/atomicity.h

    我得到编译器错误抱怨在构建包含OpenCV的项目时.环境是针对iOS的Xcode4.5.它为模拟器编译良好,但在为设备构建时失败.这是错误文本:我正在使用opencv2.framework,使用指令here构建cmake.解决方法默认情况下,XCode4.5使用libc(支持C11的LLVMC标准库)生成要构建的新项目.但OpenCV期望针对GNUlibstd

  5. 从IOS / iPad / iPhone的最大速度

    我使用OpenCVforiOS完成计算密集型应用程序.当然这很慢.但它比我的PC原型慢了200倍.所以我正在优化它.从最初的15秒,我能够获得0.4秒的速度.我想知道我是否找到了所有的东西以及别人想要分享的东西.我做了什么:>将OpenCV中的“double”数据类型替换为“float”.双倍是64位,32位cpu不能轻易处理,所以浮动给了我一些速度.OpenCV经常使用双倍.>为编译器选项添加了

  6. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  7. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  8. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  9. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  10. 在Swift iOS中使用OpenCV

    在我的xcode项目中添加OpenCV2框架后,我试图搜索samlpes或教程与swift集成。有什么好的教程同样吗?OpenCV是用C编写的框架。苹果的reference告诉我们YoucannotimportC++codedirectlyintoSwift.Instead,createanObjective-CorCwrapperforC++code.所以你不能在一个swift项目中直接导入和使用OpenCV,但这实际上并不坏,因为你(需要)继续使用框架的C语法,这是在网络上有很多文档。那么你怎么进行呢

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部