在对二维数据进行 resize / mapping / 坐标转换等操作时,经常会将原本的整数坐标变换为小数坐标,对于非整数的坐标值一种直观有效的插值方式为双线性插值。

插值简介

双线性插值,又称为双线性内插。在数学上,双线性插值是有两个变量的插值函数的线性插值扩展,其核心思想是在两个方向分别进行一次线性插值。

双线性插值作为数值分析中的一种插值算法,广泛应用在信号处理,数字图像和视频处理等方面。

假设我们出现了需要在四个相邻正方形整数点(A,B,C,D)坐标中间(正方形范围内)选择一个点(a,b)取近似值的情形。

此时我们已知的是四个点的数值VA​,VB​,VC​,VD​,给定小数坐标E(a,b),0≤a,b≤1,如何插值求解E点的数值呢,解决类似问题的方法统称为插值,上图展示公式为双线性插值的计算方法。

最近邻法 (Nearest Interpolation)

一种最简便的方法为最近邻法,直接取与当前点距离最近的点的值作为插值结果:

其中 roundroundround 为四舍五入的取整操作,方法简便速度极快,但往往不够精细

双三次插值 (Bicubic interpolation)

双三次插值是用原图像中16(4*4)个点计算新图像中1个点,效果比较好,但是计算代价过大。

双线性插值 (Bilinear Interpolation)

使用一个点进行插值过于粗暴,16个点又过于繁琐,那就使用EEE​点周围4个点的数值来近似求解,这是一种平衡了计算代价和插值效果的折中方案,也是各大变换库的默认插值操作。

双线性插值

通过观察上述动图(可以动手挪一挪)可以清晰地看到,双线性插值本质就是把四个角落的数值按照正方形面积的比例线性加权后的结果。

好吧一句话已经把数学的核心部分讲完了

那么既然理解了本质,数学公式就好写了:

python实现

在实现时当然 for 循环大法可以解决一切问题,但总归是不太优雅,我们尝试使用 numpy 操作完成双线性插值

假设原始图像 image,变换后的小数坐标 X 矩阵 x_grid,Y 矩阵 y_grid,那么可以使用如下的 bilinear_by_meshgrid 函数快速双线性插值,已经处理好了边界,可以放心使用。

def bilinear_by_meshgrid(image, x_grid, y_grid):

    #               Ia, Wd                          Ic, Wb
    #           (floor_x, floor_y)              (ceil_x, floor_y)   
    #
    #                               (x, y)
    #
    #               Ib , Wc                         Id, Wa
    #           (floor_x, ceil_y)               (ceil_x, ceil_y)   
    #

    assert image.shape == x_grid.shape == y_grid.shape
    assert image.ndim == 2
    H, W = image.shape[:2]

    floor_x_grid = np.floor(x_grid).astype('int32')
    floor_y_grid = np.floor(y_grid).astype('int32')
    ceil_x_grid = floor_x_grid   1
    ceil_y_grid = floor_y_grid   1

    if np.max(ceil_x_grid) > W -1 or  np.max(ceil_y_grid) > H -1 or np.min(floor_x_grid) < 0 or np.min(floor_y_grid) < 0:
        print("Warning: index value out of original matrix, a crop operation will be applied.")

        floor_x_grid = np.clip(floor_x_grid, 0, W-1).astype('int32')
        ceil_x_grid = np.clip(ceil_x_grid, 0, W-1).astype('int32')
        floor_y_grid = np.clip(floor_y_grid, 0, H-1).astype('int32')
        ceil_y_grid = np.clip(ceil_y_grid, 0, H-1).astype('int32')

    Ia = image[ floor_y_grid, floor_x_grid ]
    Ib = image[ ceil_y_grid, floor_x_grid ]
    Ic = image[ floor_y_grid, ceil_x_grid ]
    Id = image[ ceil_y_grid, ceil_x_grid ]

    wa = (ceil_x_grid - x_grid) * (ceil_y_grid - y_grid)
    wb = (ceil_x_grid - x_grid) * (y_grid - floor_y_grid)
    wc = (x_grid - floor_x_grid) * (ceil_y_grid - y_grid)
    wd = (x_grid - floor_x_grid) * (y_grid - floor_y_grid)

    assert np.min(wa) >=0 and np.min(wb) >=0 and np.min(wc) >=0 and np.min(wd) >=0
    
    W = wa   wb   wc   wd
    assert np.sum(W[:, -1])   np.sum(W[-1, :]) == 0
    
    wa[:-1, -1] = ceil_y_grid[:-1, -1] - y_grid[:-1, -1]
    wb[:-1, -1] = y_grid[:-1, -1] - floor_y_grid[:-1, -1]
    
    wb[-1, :-1] = ceil_x_grid[-1, :-1] - x_grid[-1, :-1]
    wd[-1, :-1] = x_grid[-1, :-1] - floor_x_grid[-1, :-1]
    
    wd[-1, -1] = 1
    
    W = wa   wb   wc   wd
    assert np.max(W) == np.min(W) == 1
    
    res_image = wa*Ia   wb*Ib   wc*Ic   wd*Id

    return res_image

该函数集成在我自己的python库 mtutils 中,可以通过:

pip install mtutils

直接安装,之后可以直接引用:

from mtutils import bilinear_by_meshgrid

以上就是基于Python实现二维图像双线性插值的详细内容,更多关于Python双线性插值的资料请关注Devmax其它相关文章!

基于Python实现二维图像双线性插值的更多相关文章

  1. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  2. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  3. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  4. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  5. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  6. 你没看错:Swift可以直接调用Python函数库

    上周Perfect又推出了新一轮服务器端Swift增强函数库:Perfect-Python。对,你没看错,在服务器端Swift其实可以轻松从其他语种的函数库中直接拿来调用,不需要修改任何内容。以如下python脚本为例:Perfect-Python可以用下列方法封装并调用以上函数,您所需要注意的仅仅是其函数名称以及参数。

  7. Swift中的列表解析

    在Swift中完成这个的最简单的方法是什么?我在寻找类似的东西:从Swift2.x开始,有一些与你的Python样式列表解析相当的东西。(在这个意义上,它更像是Python的xrange。如果你想保持集合懒惰一路通过,只是这样说:与Python中的列表解析语法不同,Swift中的这些操作遵循与其他操作相同的语法。

  8. swift抛出终端的python错误

    每当我尝试启动与python相关的swift时,我都会收到错误.我该如何解决?

  9. 在Android上用Java嵌入Python

    解决方法看看this,它适用于J2SE,你可以尝试在Android上运行.

  10. 在android studio中使用python代码构建android应用程序

    我有一些python代码和它的机器人,我正在寻找一种方法来使用android项目中的那些python代码.有没有办法做到这一点!?解决方法有两种主要工具可供使用,它们彼此不同:>QPython>Kivy使用Kivy,大致相同的代码也可以部署到IOS.

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部