前言

说到面向对象,大家都不陌生。关系型数据库也是后端日常用来存储数据的,但数据库是关系型的,因此,ORM通过对象模型和数据库的关系模型之间建立映射,我们就能像操作对象一样来操作数据库。 ORM的优点主要是面向对象编程,不需写原生SQL,用操作对象的方式访问数据。当然,缺点就是当遇到复杂的操作时,ORM就不那么好写了,还有就是加了一层映射,执行效率低于原生sql。不过,对于大部分项目来说,这些缺点都是可以接受的。牺牲的性能可以接受;有复杂操作时,实现就用原生SQL,ORM执行罢了。

flask sqlalchemy的配置使用

在python中,常用的ORM工具就是sqlalchemy了。下面就以一个简单的flask例子来说明吧。

首先,写一个最简单的flask项目,代码如下:

from flask import Flask

app = Flask(__name__)
@app.route('/')
def orm_test():
    return "hello"

接下来我们导入ORM配置,添加如下代码:

from flask_sqlalchemy import SQLAlchemy

def orm_config():
    url = "mysql mysqlconnector://{user}:{pwd}@{host}:{port}/{db_name}?charset=utf8"
    orm_conf = {
        'SQLALCHEMY_DATABASE_URI': url
    }
    return orm_conf

# ORM 设置
app.config.from_mapping(orm_config)
db = SQLAlchemy(app)

这样我们就将ORM配置OK了。

  • 然后我们新增一个表table1的model
# model表名
class Table1(db.Model):
    # 表名
    __tablename__ = "table1"

    id = db.Column(db.Integer, primary_key=True)
    col = db.Column(db.String(64), nullable=False, unique=True, comment='字段释义')

以上配置这是在数据源只有一个库的时候,但很多时候我们还需要访问别的库,这时需要在ORM配置和model上做一些设置。

ORM配置中需要用到SQLALCHEMY_BINDS来添加数据库, model中__bind_key__来指定数据库了。

具体修改如下:

修改ORM配置:

def orm_config():
    url = "mysql mysqlconnector://{user}:{pwd}@{host}:{port}/{db_name}?charset=utf8"
    # 指定的别库
    other_url = "mysql mysqlconnector://{user1}:{pwd1}@{host1}:{port1}/{db_name1}?charset=utf8"
    orm_conf = {
        'SQLALCHEMY_DATABASE_URI': url,
        # 添加别库
        "SQLALCHEMY_BINDS":{
                "other_db":other_url
            },
    }
    return orm_conf

表model指定库:

class Table2(db.Model):
    # 指定别库
    __bind_key__ = 'other_db'
    __tablename__ = "table2"
    
    id = db.Column(db.Integer, primary_key=True)
    col = db.Column(db.String(64), nullable=False, unique=True, comment='字段释义')

最后,我们在接口中使用下ORM。

@app.route('/')
def orm_test():
    # 查询table1数据
    rows = Table1.query.filter(Table1.id<5)
    res = []
    for row in rows:
        dict = {
            "id": row.id,
            "col": row.col
        }
        res.append(dict)
    return "hhh"

当我们遇到复杂操作,不知道ORM语法该怎么写时,还可以直接用原生sql ORM session execute的方式执行,示例如下:

sql = "select count(*) as cnt from table1 group by col"
rows = db.session.execute(sql)

以上例子我们是查询table1表的id<5的数据。

完整代码如下:

from flask import Flask
from flask_sqlalchemy import SQLAlchemy
app = Flask(__name__)
def orm_config():
    url = "mysql mysqlconnector://{user}:{pwd}@{host}:{port}/{db_name}?charset=utf8"
    other_url = "mysql mysqlconnector://{user1}:{pwd1}@{host1}:{port1}/{db_name1}?charset=utf8"
    orm_conf = {
        'SQLALCHEMY_DATABASE_URI': url,
        "SQLALCHEMY_BINDS":{
                "other_db":other_url
            },
    }
    return orm_conf

# ORM 设置
app.config.from_mapping(orm_config)
db = SQLAlchemy(app)

# model表名
class Table1(db.Model):
    # 表名
    __tablename__ = "table1"

    id = db.Column(db.Integer, primary_key=True)
    col = db.Column(db.String(64), nullable=False, unique=True, comment='字段释义')

class Table2(db.Model):
    # 指定库
    __bind_key__ = 'other_db'
    __tablename__ = "table2"

    id = db.Column(db.Integer, primary_key=True)
    col = db.Column(db.String(64), nullable=False, unique=True, comment='字段释义')

@app.route('/')
def orm_test():
    # 查询table1数据
    rows = Table1.query.filter(Table1.id<5)
    res = []
    for row in rows:
        dict = {
            "id": row.id,
            "col": row.col
        }
        res.append(dict)
    return "hhh"
if __name__ =="__main__":
    app.run()

sqlalchemy的增删改查

刚开始接触sqlalchemy时,对于语法不熟悉,写代码也是比较痛苦的。这里总结下sqlalchemy常用的语法吧。

查询数据

# 查询id<5的数据
q = Table1.query.filter(Table1.id<5)
# 查询过滤用 and、or
from sqlalchemy import and_, or_
q = Table1.query.filter(and_(Table1.id<5, Table1.col=='掘金'))
q = Table1.query.filter(or_(Table1.id<5, Table1.col=='掘金'))
# 查询过滤用in(语法:model.{字段名}.in_({列表}))
q = Table1.query.filter(Table1.id.in_([1,2,3]))
# 连表查询
q = Table1.query.join(Table2, Table2.id==Table1.id) \
                   .filter(Table1.id<5)

# 解析数据
res = {'data': [dict(i) for i in q]}
# 查询数据count
count = q.count()

增加数据

row = Table1(id=1, col='掘金')
db.session.add(row)
db.seesion.commit()

修改数据

 row = Table1.query.filter(Table1.id<5)
 update_data = {"col": "掘金"}
 row.update(update_data)
 db.session.commit()

删除数据

row = Table1.query.filter(Table1.id<5)
row.delete()
db.session.commit()

备注: 增删改都要commit()

总结

我们在工程代码中使用sqlalchemy时,在配置时记得根据实际情况添加相关配置参数,比如连接池的数量、自动回收连接的秒数等等。

到此这篇关于Python flask sqlalchemy的简单使用及常用操作的文章就介绍到这了,更多相关Python flask sqlalchemy内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

Python flask sqlalchemy的简单使用及常用操作的更多相关文章

  1. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  2. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  3. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  4. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  5. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  6. 你没看错:Swift可以直接调用Python函数库

    上周Perfect又推出了新一轮服务器端Swift增强函数库:Perfect-Python。对,你没看错,在服务器端Swift其实可以轻松从其他语种的函数库中直接拿来调用,不需要修改任何内容。以如下python脚本为例:Perfect-Python可以用下列方法封装并调用以上函数,您所需要注意的仅仅是其函数名称以及参数。

  7. Swift中的列表解析

    在Swift中完成这个的最简单的方法是什么?我在寻找类似的东西:从Swift2.x开始,有一些与你的Python样式列表解析相当的东西。(在这个意义上,它更像是Python的xrange。如果你想保持集合懒惰一路通过,只是这样说:与Python中的列表解析语法不同,Swift中的这些操作遵循与其他操作相同的语法。

  8. swift抛出终端的python错误

    每当我尝试启动与python相关的swift时,我都会收到错误.我该如何解决?

  9. 在Android上用Java嵌入Python

    解决方法看看this,它适用于J2SE,你可以尝试在Android上运行.

  10. 使用Retrofit在Android中重新创建flask api调用

    我在服务器上有一个烧瓶app和api,它使用从终端发送的以下url我试图在Android上使用改造来重新创建它.我使用的是1.7版,因为这适用于此处未显示的一些遗留代码.这是应用程序类的相关部分和api类我现在只得到一般性错误,例如这是我的第一个烧瓶应用程序,我不完全确定如何调试所以任何帮助在这里也是赞赏.我也没有访问服务器日志更新为了尝试追踪问题,我编辑了服务器上的代码.如果我只是在api中返回

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部