从Keras转换成PB模型

请注意,如果直接使用Keras2ONNX进行模型转换大概率会出现报错,这里笔者曾经进行过不同的尝试,最后都失败了。

所以笔者的推荐的情况是:首先将Keras模型转换为TensorFlow PB模型。

那么通过tf.keras.models.load_model()这个函数将模型进行加载,前提是你有一个基于h5格式或者hdf5格式的模型文件,最后再通过改变模型的保存格式save_format参数改为tf。即可实现从Keras转换为TensorFow的格式文件了。

import tensorflow as tf
model_path = './models/model.h5'                    # 模型文件
model = tf.keras.models.load_model(model_path)
model.save('tfmodel', save_format='tf')

转换后的模型文件结构是这样的:

.
├── assets
├── keras_metadata.pb
├── saved_model.pb
└── variables
    ├── variables.data-00000-of-00001
    └── variables.index

2 directories, 4 files

从PB模型转换成ONNX模型

从PB模型转换为ONNX模型是很简单的,通过调用tf2onnx这个模块下的convert来进行处理。

你需要做的,只需要将--save-model来指定你已经转换好的TensorFlow模型,使用--output来指定你的ONNX模型输出的路径(需要指定一个独立的文件,如./xx/xx.onnx)

 python -m tf2onnx.convert --saved-model ./tfmodel/ --output ./models/model.onnx --opset 11 --verbose

这样我们就得到一个ONNX模型:

.
├── model.h5
├── model.onnx
└── model_fp16.onnx

改变现有的ONNX模型精度

考虑到在不同的计算设备上,半精度和双精度锁带来的性能提升是显而易见的。

这里我使用了一个VGG16的模型来测试了fp16和fp32的性能。

----------------------
VGG Full Precision:
    Data Size: 124
    VGGFullPrecision Timing: 7.462206602096558 Seconds
    Connections: 1824812148
----------------------
VGG Half Precision:
    Data Size: 124
    VGGHalfPrecision Timing(In TensorRT): 2.563319444656372 Seconds
    Connections: 1824812148
----------------------

可以看到,在我这张RTX2060上,启用fp16相较于fp32的性能提升接近3倍。

那么我们该如何将现有的ONNX模型从fp32模型转换成fp16模型呢?

首先我们需要准备一个叫onnxmltools的库。可以通过pip来进行安装。

pip install onnxmltools

确认安装好onnxmltools后,我们通过如下的一段脚本进行精度的转换:

import onnxmltools
# 加载float16_converter转换器
from onnxmltools.utils.float16_converter import convert_float_to_float16
# 使用onnxmltools.load_model()函数来加载现有的onnx模型
# 但是请确保这个模型是一个fp32的原始模型
onnx_model = onnxmltools.load_model('../module/models/model.onnx')
# 使用convert_float_to_float16()函数将fp32模型转换成半精度fp16
onnx_model_fp16 = convert_float_to_float16(onnx_model)
# 使用onnx.utils.save_model()函数来保存,
onnxmltools.utils.save_model(onnx_model_fp16, '../module/models/model_fp16.onnx')

部署ONNX 模型

在部署ONNX模型阶段,我们将使用onnxruntime这个模块。

针对你所将使用的计算设备,如果你是CPU用户,那么你需要使用如下的指令来安装onnxruntime

pip install onnxruntime

反之,如果你的计算设备是是GPU,那么你需要使用如下的指令来安装onnxruntime

pip install onnxruntime-gpu

确认好onnxruntime安装完成后,你只需要使用如下的指令来加载你的ONNX模型即可

import onnxruntime as ort
# 指定onnx模型所在的位置
model_path = './module/models/model.onnx'
# 创建providers参数列表
providers = [
		# 指定模型可用的CUDA计算设备参数
        ('CUDAExecutionProvider', {
        	# 因为这里笔者只有一张GPU,因此GPU ID序列就为0
            'device_id': 0,
            # 这里网络额外策略使用官方默认值
            'arena_extend_strategy': 'kNextPowerOfTwo',
            # 官方这里默认建议的GPU内存迭代上限是2GB,如果你的GPU显存足够大
            # 可以将这里的2修改为其它数值
            'gpu_mem_limit': 2 * 1024 * 1024 * 1024,
            # cudnn转换算法的调用参数设置为完整搜索
            'cudnn_conv_algo_search': 'EXHAUSTIVE',
            # 确认从默认流进行CUDA流赋值
            'do_copy_in_default_stream': True,
        }),
        'CPUExecutionProvider',
    ]
# 使用onnxruntime.InferenceSession()函数创建Session
# 第一参数为模型所在的路径,第二参数为模型的providers参数列表
session = ort.InferenceSession(model_path, providers=providers)
# 通过get_input()函数和get_output()函数获取网络的输入和输出名称
input_name = session.get_inputs()[0].name
output_name = session.get_outputs()[0].name 
# 使用session.run()函数执行ONNX任务
# 值得注意的是,这里演示使用的ONNX模型是FP32精度的模型
# 如果你使用的fp16模型但传入的数据是fp32类型的会抛出数据异常的错误
# 另外ONNX的异常抛出是十分人性化的,它会指明你在推理是发生异常的具体位置以及应对策略
result = session.run(
                [output_name], {input_name: image.astype(np.float32)})[0]
result = result.argmax()

总结

以下ONNX简介来自于ONNX官方

ONNX 是一种用于表示机器学习模型的开放格式。 ONNX 定义了一组通用运算符——机器学习和深度学习模型的构建块——以及一种通用文件格式,使 AI 开发人员能够使用具有各种框架、工具、运行时和编译器的模型。

因此,ONNX是可以实现无缝的跨平台操作的。另外ONNX也支持了苹果的CoreML,这意味着如果你有需要在你的M1/M2 MacBook或者你的iOS设备上进行ONNX推理,ONNX也提供了对应支持的工具。

未来,ONNX将成为下一代AI研究人员或AI研发人员必备的技能之一。

到此这篇关于Python深度学习之Keras模型转换成ONNX模型流程详解的文章就介绍到这了,更多相关Python Keras模型转ONNX模型内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

Python深度学习之Keras模型转换成ONNX模型流程详解的更多相关文章

  1. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  2. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  3. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  4. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  5. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  6. 你没看错:Swift可以直接调用Python函数库

    上周Perfect又推出了新一轮服务器端Swift增强函数库:Perfect-Python。对,你没看错,在服务器端Swift其实可以轻松从其他语种的函数库中直接拿来调用,不需要修改任何内容。以如下python脚本为例:Perfect-Python可以用下列方法封装并调用以上函数,您所需要注意的仅仅是其函数名称以及参数。

  7. Swift中的列表解析

    在Swift中完成这个的最简单的方法是什么?我在寻找类似的东西:从Swift2.x开始,有一些与你的Python样式列表解析相当的东西。(在这个意义上,它更像是Python的xrange。如果你想保持集合懒惰一路通过,只是这样说:与Python中的列表解析语法不同,Swift中的这些操作遵循与其他操作相同的语法。

  8. swift抛出终端的python错误

    每当我尝试启动与python相关的swift时,我都会收到错误.我该如何解决?

  9. 在Android上用Java嵌入Python

    解决方法看看this,它适用于J2SE,你可以尝试在Android上运行.

  10. 在android studio中使用python代码构建android应用程序

    我有一些python代码和它的机器人,我正在寻找一种方法来使用android项目中的那些python代码.有没有办法做到这一点!?解决方法有两种主要工具可供使用,它们彼此不同:>QPython>Kivy使用Kivy,大致相同的代码也可以部署到IOS.

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部