介绍

本文,我们将使用欧几里德距离跟踪和轮廓的概念在 Python 中使用 OpenCV 构建车辆计数器系统。

对象追踪

对象跟踪是在视频中定位移动对象的过程。在 OpenCV 中有多种技术可以执行对象跟踪。可以针对 2 种情况执行对象跟踪:

  • 跟踪单个对象
  • 跟踪多个对象

在这里,我们将执行多对象跟踪方法,因为我们在一个时间范围内有多辆车。

流行的追踪算法

DEEP SORT:它是最广泛使用和非常有效的目标跟踪算法之一,它适用于 YOLO 目标检测,使用卡尔曼滤波器进行跟踪。

质心跟踪算法:质心跟踪算法是一种易于理解且非常有效的算法。这是一个多步骤的过程。

步骤 1:获取检测到的对象的边界框坐标并使用边界框的坐标计算质心。

步骤 2:对于每个后续帧,它使用边界框坐标计算质心,并为这些边界框分配一个 id,并计算每个可能的质心之间的欧几里德距离。

步骤 3:我们的假设是给定对象可能会在后续帧中移动,并且它们质心之间的欧几里德距离将是与其他对象相比的最小距离。

步骤 4:将相同的 ID 分配给后续帧之间的最小移动质心。

为了检测任何运动物体,我们可以用 frame(t) 减去 frame(t 1)。

对象跟踪的应用

因为计算机不断增长的计算能力,对象跟踪变得越来越先进。对象跟踪有一些主要的用例。

  • 交通跟踪和避免碰撞。
  • 人群追踪
  • 无人在家时进行宠物追踪
  • 导弹跟踪
  • 空气画笔

实现欧几里得距离跟踪器

本文使用的所有代码的源文件和测试视频都可以通过这个链接下载

上面讨论的所有步骤都可以使用一些数学计算来执行

我们已经建立了一个名为EuclideanDistTracker对象跟踪的类。

import math
class EuclideanDistTracker:
    def __init__(self):
        # Storing the positions of center of the objects
        self.center_points = {}
        # Count of ID of boundng boxes
        # each time new object will be captured the id will be increassed by 1
        self.id_count = 0
    def update(self, objects_rect):
        objects_bbs_ids = []
        # Calculating the center of objects
        for rect in objects_rect:
            x, y, w, h = rect
            center_x = (x   x   w) // 2
            center_y = (y   y   h) // 2
            # Find if object is already detected or not
            same_object_detected = False
            for id, pt in self.center_points.items():
                dist = math.hypot(center_x - pt[0], center_y - pt[1])
                if dist < 25:
                    self.center_points[id] = (center_x, center_y)
                    print(self.center_points)
                    objects_bbs_ids.append([x, y, w, h, id])     
                    same_object_detected = True
                    break
           # Assign the ID to the detected object
           if same_object_detected is False:
               self.center_points[self.id_count] = (center_x, center_y)                      
               objects_bbs_ids.append([x, y, w, h, self.id_count])       
               self.id_count  = 1
        # Cleaning the dictionary ids that are not used anymore
        new_center_points = {}
        for obj_bb_id in objects_bbs_ids:
            var,var,var,var, object_id = obj_bb_id
            center = self.center_points[object_id]
            new_center_points[object_id] = center
       # Updating the dictionary with IDs that is not used
       self.center_points = new_center_points.copy()
       return objects_bbs_ids

你可以创建一个名为tracker.py并粘贴跟踪器代码的文件,也可以使用此链接直接下载跟踪器文件。

  • update→更新方法需要一个包含所有边界框坐标的数组。
  • tracker 返回一个包含 [x,y,w,h, object_id] 的数组。这里 x,y,w,h 是边界框的坐标,object_id 是与该边界框关联的 id。

在准备好跟踪器文件后,我们需要实现我们的目标检测器,稍后我们将我们的跟踪器与目标检测器绑定。

加载库和视频

从我们已经创建的 tracker.py 文件中导入我们的 EuclideanDistTracker 类。

import cv2
import numpy as np
from tracker import EuclideanDistTracker
tracker = EuclideanDistTracker()
cap  = cv2.VideoCapture('highway.mp4')
ret, frame1 = cap.read()
ret, frame2 = cap.read()

cap.read()它返回帧和布尔值,我们需要捕获帧。

在OpenCV中获取视频帧

这个想法是获得两个后续帧之间的绝对差,以便检测移动对象。

while cap.isOpened():
    # ret, frame = cap.read()
    diff = cv2.absdiff(frame1, frame2)  
    # this method is used to find the difference bw two  frames
    gray = cv2.cvtColor(diff, cv2.COLOR_BGR2GRAY)
    blur = cv2.GaussianBlur(gray, (5,5), 0 )
    # here i would add the region of interest to count the single lane cars
    height, width = blur.shape
    print(height, width)
    # thresh_value = cv2.getTrackbarPos('thresh', 'trackbar')
    _, threshold = cv2.threshold(blur, 23, 255, cv2.THRESH_BINARY)
    dilated = cv2.dilate(threshold, (1,1), iterations=1)
    contours, _, = cv2.findContours(dilated, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    detections = []
    # DRAWING RECTANGLE BOX (Bounding Box)
    for contour in contours:
        (x,y,w,h) = cv2.boundingRect(contour)
        if cv2.contourArea(contour) <300:
            continue
        detections.append([x,y,w,h])
    boxes_ids = tracker.update(detections)
    for box_id in boxes_ids:
        x,y,w,h,id = box_id
        cv2.putText(frame1, str(id),(x,y-15),  cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0,0,255), 2)
        cv2.rectangle(frame1, (x,y),(x w, y h), (0,255,0), 2)
        cv2.imshow('frame',frame1)
    frame1 = frame2
    ret, frame2 = cap.read()
    key = cv2.waitKey(30)
    if key == ord('q):
        break
cv2.destroyAllWindows()

cv2.absdiff 此方法用于获取两帧之间的绝对差。

得到帧差后将差值转换为灰度,然后应用阈值和轮廓检测。

找到的轮廓是所有运动物体的轮廓

为了避免所有的噪音,我们只采用那些尺寸大于 300 的轮廓。

boxes_ids 包含 (x,y,w,h,id)。

cv2.putText 用于在框架上写入 Id。

cv2.rectange() 用于绘制边界框。

输出:车辆计数器系统

结论

在本文中,我们讨论了对象跟踪的概念和对象跟踪的用例,即车辆计数器。

我们讨论了对象跟踪的一些应用,并讨论了质心跟踪算法中涉及的步骤,并将其用于车辆计数。

基于深度学习的对象跟踪算法(如用于 YOLO 对象检测的 DEEP SORT 算法)在我们的案例中执行得更准确。

到此这篇关于Python OpenCV编写车辆计数器系统的文章就介绍到这了,更多相关Python OpenCV车辆计数内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

Python+OpenCV编写车辆计数器系统的更多相关文章

  1. iOS使用openCV检测来自摄像头的矩形

    如果我在处理它之前克隆matimage,通过记录它,它似乎处理图像甚至找到矩形,但矩形不会被绘制到图像输出到imageView.我很确定我错过了一些东西,可能是因为我没有正确传递某个对象,指向对象的指针等等,而我需要修改的对象则没有.无论如何,如果这不是正确的方法,我真的很感谢他们做这样的事情的教程或例子,使用openCV或GPUImage…它不需要尝试使用matimage来设置imageView.image,而只需要将matimage转换为在imageView中实际修改,因为CvVideoCamera已

  2. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  3. 使用Xcode为OS X Lion / Mountain Lion编译OpenCV(2.3.1)

    任何人都可以为我提供一些如何使用Xcode在OSXLion上编译OpenCV2.3.1的详细指南吗?我对此感到生气…我得到了源码,使用cmake创建Xcode模板并尝试构建它,但它失败了大约200个错误.提前致谢,大教堂解答我的回答帖子.解决方法详细指南如何使用MacPorts在Xcode4.2.1的OSXLion下启动和运行OpenCV2.3.1编辑08/06/2012:这也适用于OpenCV2.4.1.只需确保您获得最新版本的Xcode并安装“命令行工具”.编辑15/08/2012:使用Mountai

  4. ios – OpenCV构建问题,找不到ext/atomicity.h

    我得到编译器错误抱怨在构建包含OpenCV的项目时.环境是针对iOS的Xcode4.5.它为模拟器编译良好,但在为设备构建时失败.这是错误文本:我正在使用opencv2.framework,使用指令here构建cmake.解决方法默认情况下,XCode4.5使用libc(支持C11的LLVMC标准库)生成要构建的新项目.但OpenCV期望针对GNUlibstd

  5. 从IOS / iPad / iPhone的最大速度

    我使用OpenCVforiOS完成计算密集型应用程序.当然这很慢.但它比我的PC原型慢了200倍.所以我正在优化它.从最初的15秒,我能够获得0.4秒的速度.我想知道我是否找到了所有的东西以及别人想要分享的东西.我做了什么:>将OpenCV中的“double”数据类型替换为“float”.双倍是64位,32位cpu不能轻易处理,所以浮动给了我一些速度.OpenCV经常使用双倍.>为编译器选项添加了

  6. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  7. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  8. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  9. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  10. 在Swift iOS中使用OpenCV

    在我的xcode项目中添加OpenCV2框架后,我试图搜索samlpes或教程与swift集成。有什么好的教程同样吗?OpenCV是用C编写的框架。苹果的reference告诉我们YoucannotimportC++codedirectlyintoSwift.Instead,createanObjective-CorCwrapperforC++code.所以你不能在一个swift项目中直接导入和使用OpenCV,但这实际上并不坏,因为你(需要)继续使用框架的C语法,这是在网络上有很多文档。那么你怎么进行呢

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部