前言:

Python 是一种用于进行数据分析的出色语言,主要是因为以数据为中心的 Python 包的奇妙生态系统。Pandas 就是其中之一,它使导入和分析数据变得更加容易。

大多数用于分析的数据以表格格式的形式提供,例如 Excel 和逗号分隔文件 (CSV)。要访问 csv 文件中的数据,我们需要一个函数 read_csv() 以数据框的形式检索数据。在使用这个功能之前,我们必须导入 pandas 库。

导入 Pandas 库: 

import pandas as pd

read_csv() 函数用于从 csv 文件中检索数据。read_csv() 方法的语法是:

pd.read_csv(filepath_or_buffer, sep=', ', delimiter=None, header='infer', names=None, index_col=None, 
             usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, 
             dtype=None, engine=None, converters=None, true_values=None, false_values=None, 
             skipinitialspace=False, skiprows=None, nrows=None, na_values=None, keep_default_na=True, 
             na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=False, infer_datetime_format=False, 
             keep_date_col=False, date_parser=None, dayfirst=False, iterator=False, chunksize=None, compression='infer', 
             thousands=None, decimal=b'.', lineterminator=None, quotechar='"', quoting=0, escapechar=None, comment=None, 
             encoding=None, dialect=None, tupleize_cols=None, error_bad_lines=True, warn_bad_lines=True, skipfooter=0, 
             doublequote=True, delim_whitespace=False, low_memory=True, memory_map=False, float_precision=None) 

代码 #1 从 csv 文件中检索数据

# Import pandas
import pandas as pd

# 读取csv文件
pd.read_csv("filename.csv")

这是带有默认值的参数列表。并非所有这些都很重要,但记住这些实际上可以节省自己执行某些功能的时间。通过在 jupyter notebook 中按 shift tab 可以查看任何函数的参数。

下面给出了有用的和它们的用法:

  • filepath_or_buffer:这是要使用此函数检索的文件的位置。它接受文件的任何字符串路径或 URL。
  • sep:表示分隔符,默认为 ', ',如 csv(逗号分隔值)。
  • header:它接受 int、int 列表、行号用作列名和数据的开头。如果没有传递名称,即header=None,那么它将显示第一列为0,第二列显示为1,以此类推。
  • usecols:用于仅从 csv 文件中检索选定的列。
  • nrows:表示要从数据集中显示的行数。
  • index_col:如果没有,则没有索引号与记录一起显示。  
  • 挤压:如果为真且仅传递一列,则返回熊猫系列。
  • skiprows:跳过新数据框中传递的行。
  • 名称:它允许检索具有新名称的列。
范围 Use
filepath_or_buffer 文件的 URL 或目录位置
sep 代表分隔符,默认为 ', ' 如 csv(逗号分隔值)
index_col 将传递的列作为索引而不是 0、1、2、3…r    
header 将传递的 row/s[int/int list] 作为标题   
use_cols 仅使用传递的 col[string list] 来制作数据框
squeeze 如果为 true 且仅传递一列,则返回 pandas 系列
skiprows 跳过新数据框中传递的行

Code #2 :

# 导入 Pandas 库
import pandas as pd

pd.read_csv(filepath_or_buffer = "pokemon.csv")

# 使传递的行标题
pd.read_csv("pokemon.csv", header =[1, 2])

# 将传递的列作为索引而不是 0、1、2、3....
pd.read_csv("pokemon.csv", index_col ='Type')

# 仅将传递的 cols 用于数据框
pd.read_csv("pokemon.csv", usecols =["Type"])

# 如果只有一列,则返回熊猫系列
pd.read_csv("pokemon.csv", usecols =["Type"], squeeze = True)
							
# 跳过新系列中传递的行
pd.read_csv("pokemon.csv", skiprows = [1, 2, 3, 4])

到此这篇关于Python  Pandas教程之使用 pandas.read_csv() 读取 csv的文章就介绍到这了,更多相关Python  pandas.read_csv() 读取 csv内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

Python  Pandas教程之使用 pandas.read_csv() 读取 csv的更多相关文章

  1. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  2. ios – 如何从Core Data创建CSV文件(swift)

    我正在构建一个带有核心数据的应用程序,它们显示在tableView中.现在我想将这些数据导出到CSV文件,这样我就可以在windows上的excel中打开它.我搜索了很多,但没有找到正确的答案.有人可以帮助我或给我一个良好的解释或教程的链接?

  3. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  4. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  5. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  6. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  7. 你没看错:Swift可以直接调用Python函数库

    上周Perfect又推出了新一轮服务器端Swift增强函数库:Perfect-Python。对,你没看错,在服务器端Swift其实可以轻松从其他语种的函数库中直接拿来调用,不需要修改任何内容。以如下python脚本为例:Perfect-Python可以用下列方法封装并调用以上函数,您所需要注意的仅仅是其函数名称以及参数。

  8. Swift中的列表解析

    在Swift中完成这个的最简单的方法是什么?我在寻找类似的东西:从Swift2.x开始,有一些与你的Python样式列表解析相当的东西。(在这个意义上,它更像是Python的xrange。如果你想保持集合懒惰一路通过,只是这样说:与Python中的列表解析语法不同,Swift中的这些操作遵循与其他操作相同的语法。

  9. swift 3.1如何从CSV获取数组或字典

    我怎样才能在这种CSV文件中使用数据?或者我如何打印“内部”列的第2行值并将其分配给属性/实体?我有这种从excel文件转换为Numbers的文件,我想抓取每列的数据并使用它们.原始CSV文件以数字打开:我得到的控制台输出:使用这种方法:解决方案感谢JensMeder运用在viewDidLoad中你想要做的是将字符串分成行然后分成列.Swift已经为String结构提供了components方法.然后您可以通过以下方式访问任何值

  10. 数组 – 将.csv数据导入数组

    我在过去几年使用Objective-C.现在我正在尝试Xcode6beta4与迅速.我想导入一个.csv表单我的webserver到一个数组.我在Objective-C中的旧代码是:我怎么可以在Swift这样做?有最佳做法–推荐吗?有多个swift库可用:CSVImporter,它是一个适用于处理大型csv文件的异步解析器.SwiftCSV,它是一个用于OSX和iOS的简单CSV解析库.和CSwiftV,它是符合rfc4180规范的csv解析器,但根据作者,它全部在内存中,因此不适合大文件.

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部