前言

现在我们的计算机都是多个核的,通俗来说就是多个处理或者计算单元。为了加快运算和处理速度,我们可以将不同的任务交给多个核心进行同时处理,从而提高了运算速度和效率,多个核心同时运作就是多个进程同时进行,这就是多进程。

1.创建进程

创建进程和创建线程的方法基本一致,请看下面代码:

# coding:utf-8
# 导入多进程的包,并重命名为mp
import multiprocessing as mp
# 主要工作
def p1():
    print("zxy")
if __name__ == "__main__":
    # 创建新进程
    new_process = mp.Process(target=p1, name="p1")
    # 启动这个进程
    new_process.start()
    # 阻塞该进程
    new_process.join()

控制台效果图:

2.多进程中的Queue

为什么要在多进程中使用queue呢?
因为多进程和多线程一样,在工作函数中,无法通过return返回进程函数中的结果,所以使用queue进行存储结果,要用的时候再进行取出。

# coding:utf-8
import time
import multiprocessing as mp
"""
    使用多进程时,运行程序所用的时间
"""
def job1(q):
    res = 0
    for i in range(100):
        res  = i   i**5  i**8
        time.sleep(0.1)
    # 将结果放入队列中
    q.put(res)
def job2(q):
    res = 0
    for i in range(100):
        res  = i   i**5  i**8
        time.sleep(0.1)
    q.put(res)
if __name__ == "__main__":
    start_time = time.time()
    # 创建队列
    q = mp.Queue()
    # 创建进程1
    process1 = mp.Process(target=job1, args=(q,))
    # 创建进程2
    process2 = mp.Process(target=job2, args=(q,))
    process1.start()
    process2.start()
    # 通过队列获取值
    res1 = q.get()
    res2 = q.get()
    print("res1为%d,res2为%d" % (res1, res2))
    end_time = time.time()
    print("整个过程所用时间为%s" %(end_time-start_time))

效果图:

3.多进程与多线程的性能比较

接下来使用多进程、多线程、以及什么都不用的普通方法进行处理,看看他们三种方法的效率如何?

# coding:utf-8
import multiprocessing as mp
import time
import threading as th
"""
    多进程、多线程、普通方法的性能比较
"""
# 多进程工作
def mp_job(res):
    for i in range(10000000):
        res  = i**5   i**6
    print(res)
# 多线程工作
def mt_job(res):
    for i in range(10000000):
        res  = i**5   i**6
    print(res)
# 普通方法工作
def normal_job(res):
    for i in range(10000000):
        res  = i ** 5   i ** 6
    print(res)
if __name__ == "__main__":
    mp_sum = 0
    mp_start = time.time()
    process1 =mp.Process(target=mp_job, args=(mp_sum, ))
    process2 = mp.Process(target=mp_job, args=(mp_sum,))
    process1.start()
    process2.start()
    process1.join()
    process2.join()
    mp_end = time.time()
    print("多进程使用时间为", (mp_end-mp_start))
    mt_start = time.time()
    mt_sum = 0
    thread1 = th.Thread(target=mt_job, args=(mt_sum, ))
    thread2 = th.Thread(target=mt_job, args=(mt_sum, ))
    thread1.start()
    thread2.start()
    thread1.join()
    thread2.join()
    mt_end = time.time()
    print("多线程使用的时间是", (mt_end-mt_start))
    normal_start = time.time()
    normal_sum = 0
    # 进行两次
    normal_job(normal_sum)
    normal_job(normal_sum)
    normal_end = time.time()
    print("普通方法使用的时间是", (normal_end-normal_start))

效果图:

实验结果表明:多进程的效率确实高!!!

4.进程池pool

进程池是干什么用的呢?
进程池就是python的多进程提供的一个池子,将所有的进程都放在这个池子里面,让计算机自己去使用进程池中的资源,从而多进程处理一些程序,进而提高工作效率。

(1)默认使用进程池中全部进程时

# coding:utf-8
import time
import multiprocessing as mp
"""
    进程池pool的使用
"""
def job(num):
    time.sleep(1)
    return num * num
if __name__ == "__main__":
    start_time = time.time()
    # 括号里面不加参数时,默认使用进程池中所有进程
    pool = mp.Pool()
    res = pool.map(job, range(10))
    print(res)
    end_time = time.time()
    print("运行时间为", (end_time-start_time))

效果图:

(2)指定进程池中进程数时

# coding:utf-8
import time
import multiprocessing as mp
"""
    进程池pool的使用
"""
def job(num):
    time.sleep(1)
    return num * num
if __name__ == "__main__":
    start_time = time.time()
    # 括号里面加参数时,指定两个进程进行处理
    pool = mp.Pool(processes=2)
    res = pool.map(job, range(10))
    print(res)
    end_time = time.time()
    print("运行时间为", (end_time-start_time))

效果图:

(3)不使用多进程时

# coding:utf-8
import time
def job(res):
    for i in range(10):
        res.append(i*i)
        time.sleep(1)
if __name__ == "__main__":
    start_time = time.time()
    res = []
    job(res)
    print(res)
    end_time =time.time()
    print("不使用进程池所用时间为", (end_time-start_time))

效果图:

实验结论:多进程处理事情,效率很高!!!核心越多,处理越快!

5.共享内存

一个核心,我们多线程处理时,可以使用全局变量来共享数据。但是多进程之间是不行的,那我们多进程之间应该如何共享数据呢?
那就得用到共享内存了!

# coding:utf-8
import multiprocessing as mp
"""
    共享内存
"""
if __name__ == "__main__":
    # 第一个参数是数据类型的代码,i代表整数类型
    # 第二个参数是共享数据的值
    v = mp.Value("i", 0)

6.进程锁lock

进程锁和线程锁的用法基本一致。进程锁的诞生是为了避免多进程之间抢占共享数据,进而造成多进程之间混乱修改共享内存的局面。

(1)不加锁之前

# coding:utf-8
import multiprocessing as mp
import time
"""
    进程中的锁lock
"""
def job(v, num):
    for i in range(10):
        v.value  = num
        print(v.value)
        time.sleep(0.2)
if __name__ == "__main__":
    # 多进程中的共享内存
    v = mp.Value("i", 0)
    # 进程1让共享变量每次加1
    process1 = mp.Process(target=job, args=(v, 1))
    # 进程2让共享变量每次加3
    process2 = mp.Process(target=job, args=(v, 3))
    process1.start()
    process2.start()

效果图:

(2)加锁之后

# coding:utf-8
import multiprocessing as mp
import time
"""
    进程中的锁lock
"""
def job(v, num, l):
    # 加锁
    l.acquire()
    for i in range(10):
        v.value  = num
        print(v.value)
        time.sleep(0.2)
    # 解锁
    l.release()
if __name__ == "__main__":
    # 创建进程锁
    l = mp.Lock()
    # 多进程中的共享内存
    v = mp.Value("i", 0)
    process1 = mp.Process(target=job, args=(v, 1, l))
    process2 = mp.Process(target=job, args=(v, 3, l))
    process1.start()
    process2.start()

效果图:

到此这篇关于深入解析Python中的多进程的文章就介绍到这了,更多相关Python多进程内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

深入解析Python中的多进程的更多相关文章

  1. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  2. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  3. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  4. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  5. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  6. 你没看错:Swift可以直接调用Python函数库

    上周Perfect又推出了新一轮服务器端Swift增强函数库:Perfect-Python。对,你没看错,在服务器端Swift其实可以轻松从其他语种的函数库中直接拿来调用,不需要修改任何内容。以如下python脚本为例:Perfect-Python可以用下列方法封装并调用以上函数,您所需要注意的仅仅是其函数名称以及参数。

  7. Swift中的列表解析

    在Swift中完成这个的最简单的方法是什么?我在寻找类似的东西:从Swift2.x开始,有一些与你的Python样式列表解析相当的东西。(在这个意义上,它更像是Python的xrange。如果你想保持集合懒惰一路通过,只是这样说:与Python中的列表解析语法不同,Swift中的这些操作遵循与其他操作相同的语法。

  8. swift抛出终端的python错误

    每当我尝试启动与python相关的swift时,我都会收到错误.我该如何解决?

  9. 在Android上用Java嵌入Python

    解决方法看看this,它适用于J2SE,你可以尝试在Android上运行.

  10. 在android studio中使用python代码构建android应用程序

    我有一些python代码和它的机器人,我正在寻找一种方法来使用android项目中的那些python代码.有没有办法做到这一点!?解决方法有两种主要工具可供使用,它们彼此不同:>QPython>Kivy使用Kivy,大致相同的代码也可以部署到IOS.

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部