PyTorch中实现卷积的重要基础函数

1、nn.Conv2d:

nn.Conv2d在pytorch中用于实现卷积。

nn.Conv2d(
    in_channels=32,
    out_channels=64,
    kernel_size=3,
    stride=1,
    padding=1,
)

1、in_channels为输入通道数。

2、out_channels为输出通道数。

3、kernel_size为卷积核大小。

4、stride为步数。

5、padding为padding情况。

6、dilation表示空洞卷积情况。

2、nn.MaxPool2d(kernel_size=2)

nn.MaxPool2d在pytorch中用于实现最大池化。

具体使用方式如下:

MaxPool2d(kernel_size, 
		stride=None, 
		padding=0, 
		dilation=1, 
		return_indices=False, 
		ceil_mode=False)

1、kernel_size为池化核的大小

2、stride为步长

3、padding为填充情况

3、nn.ReLU()

nn.ReLU()用来实现Relu函数,实现非线性。

4、x.view()

x.view用于reshape特征层的形状。

全部代码

这是一个简单的CNN模型,用于预测mnist手写体。

import os
import numpy as np
import torch
import torch.nn as nn
import torch.utils.data as Data
import torchvision
import matplotlib.pyplot as plt
# 循环世代
EPOCH = 20
BATCH_SIZE = 50
# 下载mnist数据集
train_data = torchvision.datasets.MNIST(root='./mnist/',train=True,transform=torchvision.transforms.ToTensor(),download=True,)
# (60000, 28, 28)
print(train_data.train_data.size())                 
# (60000)
print(train_data.train_labels.size())               
train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
# 测试集
test_data = torchvision.datasets.MNIST(root='./mnist/', train=False)
# (2000, 1, 28, 28)
# 标准化
test_x = torch.unsqueeze(test_data.test_data, dim=1).type(torch.FloatTensor)[:2000]/255.
test_y = test_data.test_labels[:2000]
# 建立pytorch神经网络
class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        #----------------------------#
        #   第一部分卷积
        #----------------------------#
        self.conv1 = nn.Sequential(
            nn.Conv2d(
                in_channels=1,
                out_channels=32,
                kernel_size=5,
                stride=1,
                padding=2,
                dilation=1
            ),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2),
        )
        #----------------------------#
        #   第二部分卷积
        #----------------------------#
        self.conv2 = nn.Sequential( 
            nn.Conv2d(
                in_channels=32,
                out_channels=64,
                kernel_size=3,
                stride=1,
                padding=1,
                dilation=1
            ),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2),
        )
        #----------------------------#
        #   全连接 池化 全连接
        #----------------------------#
        self.ful1 = nn.Linear(64 * 7 * 7, 512)
        self.drop = nn.Dropout(0.5)
        self.ful2 = nn.Sequential(nn.Linear(512, 10),nn.Softmax())
    #----------------------------#
    #   前向传播
    #----------------------------#   
    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = x.view(x.size(0), -1)
        x = self.ful1(x)
        x = self.drop(x)
        output = self.ful2(x)
        return output
cnn = CNN()
# 指定优化器
optimizer = torch.optim.Adam(cnn.parameters(), lr=1e-3) 
# 指定loss函数
loss_func = nn.CrossEntropyLoss()
for epoch in range(EPOCH):
    for step, (b_x, b_y) in enumerate(train_loader): 
        #----------------------------#
        #   计算loss并修正权值
        #----------------------------#   
        output = cnn(b_x)
        loss = loss_func(output, b_y) 
        optimizer.zero_grad() 
        loss.backward() 
        optimizer.step() 
        #----------------------------#
        #   打印
        #----------------------------#   
        if step % 50 == 0:
            test_output = cnn(test_x)
            pred_y = torch.max(test_output, 1)[1].data.numpy()
            accuracy = float((pred_y == test_y.data.numpy()).astype(int).sum()) / float(test_y.size(0))
            print('Epoch: -'% epoch, ', loss: %.4f' % loss.data.numpy(), ', accuracy: %.4f' % accuracy)

以上就是PyTorch实现卷积神经网络的搭建详解的详细内容,更多关于PyTorch搭建卷积神经网络的资料请关注Devmax其它相关文章!

PyTorch实现卷积神经网络的搭建详解的更多相关文章

  1. python神经网络Densenet模型复现详解

    这篇文章主要为大家介绍了python神经网络Densenet模型复现详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  2. python神经网络学习数据增强及预处理示例详解

    这篇文章主要为大家介绍了python神经网络学习数据增强及预处理示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  3. Python使用pytorch动手实现LSTM模块

    这篇文章主要介绍了Python使用pytorch动手实现LSTM模块,LSTM是RNN中一个较为流行的网络模块。主要包括输入,输入门,输出门,遗忘门,激活函数,全连接层(Cell)和输出

  4. Pytorch搭建yolo3目标检测平台实现源码

    这篇文章主要为大家介绍了Pytorch搭建yolo3目标检测平台实现源码,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  5. python机器学习GCN图卷积神经网络原理解析

    这篇文章主要为大家介绍了GCN图卷积神经网络原理及代码解析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  6. 卷积神经网络经典模型及其改进点学习汇总

    这篇文章主要为大家介绍了卷积神经网络经典模型及其改进点学习汇总,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  7. PyTorch搭建双向LSTM实现时间序列负荷预测

    这篇文章主要为大家介绍了PyTorch搭建双向LSTM实现时间序列负荷预测,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  8. python神经网络Keras搭建RFBnet目标检测平台

    这篇文章主要为大家介绍了python神经网络Keras搭建RFBnet目标检测平台,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  9. python神经网络ResNet50模型的复现详解

    这篇文章主要为大家介绍了python神经网络ResNet50模型的复现详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  10. pytorch使用nn.Moudle实现逻辑回归

    这篇文章主要为大家详细介绍了pytorch使用nn.Moudle实现逻辑回归,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部