transforms

按住Ctrl查看transforms的源码可以知道,transforms就是一个python文件,里面定义了很多类,每一个类都是一个工具
在结构那里,可以看到有很多的类

ToTensor

Convert a PIL Image or numpy.ndarray to tensor. This transform does not support torchscript

通过ToTensor来学习transforms如何使用以及为什么使用tensor数据类型

transforms使用

transforms里面每一个类都可以看成是一个模具,我们可以用里面的模具做出一个具体的工具,如何用这个具体的工具来实现具体的功能

比如ToTensor的使用:

from torchvision import transforms
from PIL import Image

img_path = "data/train/ants_image/0013035.jpg"
img = Image.open(img_path)

tensor_trans = transforms.ToTensor()#模具(也就是这个类的对象)
tensor_img = tensor_trans(img)#实现ToTensor的功能,将一个input(PIL Image)转化成tensor

print(tensor_img)

为什么需要tensor数据类型呢?

在使用tensorboard里面常用的add_image时,里面的第二个参数是图片的数据类型,这个数据类型,可以是torch.Tensor, numpy.array, or string/blobname,上一篇博客用的是numpy.array,这里,其实可以直接得到tensor类型后直接用

from torchvision import transforms
from torch.utils.tensorboard import SummaryWriter
from PIL import Image

img_path = "data/train/ants_image/0013035.jpg"
img = Image.open(img_path)

tensor_trans = transforms.ToTensor()
tensor_img = tensor_trans(img)

writer = SummaryWriter("logs")
writer.add_image("Tensor_image", tensor_img)

writer.close()

常见的transforms

内置方法__call__()

可以发现基本上transforms里面的每一个类都有一个内置方法__call__(),这个方法和普通的方法的区别其实就是,普通方法一般是类的对象通过.的方式调用,但是call函数不需要,可以直接用对象加括号的形式调用

一个Person类,内置方法__call__和hello都有一个参数name,然后两个方法都输出name,一个通过person(“”)形式调用,一个通过person.hello(“”)调用

Normalize

Normalize a tensor image with mean and standard deviation.

这个方法进行归一化的时候,传入的参数是有两个列表一个是均值,一个是标准差,每个列表的n表示维度,是根据输入的channel数量决定的,比如我们的图片是rgb那n=3,它能将每个信道的输入进行归一化

根据公式可以知道计算的结果其实就是

代码示例:

from PIL import Image
from torchvision import transforms

img_path = "data/train/ants_image/0013035.jpg"
img = Image.open(img_path)

trans_totensor = transforms.ToTensor()
img_tensor = trans_totensor(img)

print(img_tensor[0][0][0])
trans_norm = transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
img_norm = trans_norm(img_tensor)
print(img_norm[0][0][0])

writer = SummaryWriter("logs")
writer.add_image("Normalize", img_norm)

writer.close()

输出:

tensor(0.3137)
tensor(-0.3725)

Resize

Resize the input image to the given size

参数:
可以给一个(H,W)这样的参数,改变图片的大小,也可以指定一个int,改变长和宽的比例

代码示例

print(img.size)
trans_resize = transforms.Resize((512, 512))
img_resize = trans_resize(img)# 参数和返回值都是 img PIL
print(img_resize)

输出结果:

变成了正方形

Compose

Composes several transforms together. This transform does not support torchscript.

可以将第一种类型转化为第二种,参数一的类型做输入,参数二的类型做输出,输入一定要对应,不然就会报错

代码示例

trans_totensor = transforms.ToTensor()
trans_resize_2 = transforms.Resize(512)
# PIL -> tensor
trans_compose = transforms.Compose([trans_resize_2, trans_totensor])
img_resize_2 = trans_compose(img)
writer.add_image("Resize", img_resize_2, 1)

到此这篇关于pytroch中transforms的使用详解的文章就介绍到这了,更多相关pytroch transforms的使用内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

pytorch 中transforms的使用详解的更多相关文章

  1. Python使用pytorch动手实现LSTM模块

    这篇文章主要介绍了Python使用pytorch动手实现LSTM模块,LSTM是RNN中一个较为流行的网络模块。主要包括输入,输入门,输出门,遗忘门,激活函数,全连接层(Cell)和输出

  2. Pytorch搭建yolo3目标检测平台实现源码

    这篇文章主要为大家介绍了Pytorch搭建yolo3目标检测平台实现源码,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  3. PyTorch搭建双向LSTM实现时间序列负荷预测

    这篇文章主要为大家介绍了PyTorch搭建双向LSTM实现时间序列负荷预测,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  4. pytorch使用nn.Moudle实现逻辑回归

    这篇文章主要为大家详细介绍了pytorch使用nn.Moudle实现逻辑回归,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

  5. pytorch加载自己的图片数据集的2种方法详解

    数据预处理在解决深度学习问题的过程中,往往需要花费大量的时间和精力,下面这篇文章主要给大家介绍了关于pytorch加载自己的图片数据集的2种方法,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  6. PyTorch实现手写数字的识别入门小白教程

    这篇文章主要介绍了python实现手写数字识别,非常适合小白入门学习,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  7. pytorch人工智能之torch.gather算子用法示例

    这篇文章主要介绍了pytorch人工智能之torch.gather算子用法示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  8. Pytorch深度学习addmm()和addmm_()函数用法解析

    这篇文章主要为大家介绍了Pytorch中addmm()和addmm_()函数用法解析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  9. 基于Pytorch实现逻辑回归

    这篇文章主要为大家详细介绍了基于Pytorch实现逻辑回归,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

  10. pytorch关于Tensor的数据类型说明

    这篇文章主要介绍了pytorch关于Tensor的数据类型说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部