透视表是一种可以对数据动态排布并且分类汇总的表格格式,在常用的python的数据分析非标准库pandas中体现为pivot_table模块。

pivot_table数据透视表可以灵活的定制数据分析需求进行汇总,当然在Excel办公操作中早就存在了数据透视表的工具。如今,数据透视表被应用在python语言中更是给我们带来了大大地便利。

pivot_table有四个最重要的参数index、values、columns、aggfunc,通过设置不同的参数属性从而完成不同的数据分析需求。

pivot_table是pandas非标准库下面的数据透视表模块,因此需要安装pandas非标准库。按照以往的惯例还是采用pip的方式来进行安装即可。

pip install pandas -i https://pypi.tuna.tsinghua.edu.cn/simple/

首先,使用传统的excel读取函数read_excel将Excel文件中的数据读取出来,读取数据返回的是Dataframe格式的数据。

import pandas as pd  # 导入pandas模块

df = pd.read_excel('C:/test/data.xlsx')  # 读取Excel数据文件

print(df.tail())  # 打印部分结果

#             名称  年龄    班级   成绩  表现
# 21  Python 集中营  24  1739  111  A 
# 22  Python 集中营  25  1740  112  A 
# 23  Python 集中营  26  1741  113  A 
# 24  Python 集中营  27  1742  114  A 
# 25  Python 集中营  28  1743  115  A 

1、pivot_table函数index属性

我们通过pandas的read_excel函数已经将Excel数据文件读取并返回DataFrame数据对象。接下来通过数据透视表的方式来进行数据汇总,先来看看使用index属性是如何汇总结果的。

print(pd.pivot_table(df, index=[u'名称']))

#               年龄     成绩      班级
# 名称
# Python 集中营  15.5  102.5  1730.5

上面我们只指定了一个索引'名称'字段,从结果可以看出pivot_table函数自动将名称为'Python 集中营'的值汇总了一下,并且将其他的数字属性的字段全部计算得到了均值。

print(pd.pivot_table(df, index=[u'名称', u'表现']))

#                  年龄     成绩      班级
# 名称         表现
# Python 集中营 A   15.5  102.5  1730.5

若是我们使用了两个或是两个以上的字段作为index的值则实际上会进行两次或两次以上的分组,这里体现为先对'名称'字段进行分组、其次再对'表现'字段进行分组。

2、pivot_table函数values属性

values属性即在使用时将指定的字段显示出来,因为有的情况下并不需要将所有的字段都展示出来往往可能用到的是其中的几个字段的值来参与运算。

print(pd.pivot_table(df, index=[u'表现'], values=[u'班级', u'成绩']))

#        成绩      班级
# 表现
# A   102.5  1730.5

需要注意的是values属性只能用来指定具有数字属性的字段,可能为了能够更好的实现分组统计的效果吧!

3、pivot_table函数aggfunc属性

aggfunc属性则是对计算方式的设置,也可以同时设置好几种计算方式将结果展示出来。在前面的统计中并没有设置,默认则是使用均值的算法来统计汇总信息的。

下面设置两种的计算方式来统计我们之前的结果,一种还是均值、另一种则是求和的方式将两种计算模式下的结果都统计出来。

print(pd.pivot_table(df, index=[u'名称'], values=[u'年龄', u'成绩'], aggfunc=['mean', 'sum']))

#            mean         sum
#               年龄     成绩   年龄    成绩
# 名称
# Python 集中营  15.5  102.5  403  2665

可以发现汇总结果分别汇总出来了年龄和成绩的平均值、总和,效果还是相当理想的。

4、pivot_table函数columns属性

columns属性主要用来显示字符类型的字段的,若是字段对应的所在行没有值时则可以使用fill_value函数来填充默认值使数据变得完整,一般来说columns和fill_value是搭配使用的。

print(pd.pivot_table(df, index=[u'名称'], values=[u'年龄', u'成绩'], aggfunc=['mean', 'sum'], columns=[u'表现'],
                     fill_value=0))

#             mean         sum
#               年龄     成绩   年龄    成绩
# 表现            A      A    A     A 
# 名称
# Python 集中营  15.5  102.5  403  2665

 到此这篇关于Python制作数据分析透视表的方法详解的文章就介绍到这了,更多相关Python透视表内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

Python制作数据分析透视表的方法详解的更多相关文章

  1. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  2. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  3. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  4. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  5. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  6. 你没看错:Swift可以直接调用Python函数库

    上周Perfect又推出了新一轮服务器端Swift增强函数库:Perfect-Python。对,你没看错,在服务器端Swift其实可以轻松从其他语种的函数库中直接拿来调用,不需要修改任何内容。以如下python脚本为例:Perfect-Python可以用下列方法封装并调用以上函数,您所需要注意的仅仅是其函数名称以及参数。

  7. Swift中的列表解析

    在Swift中完成这个的最简单的方法是什么?我在寻找类似的东西:从Swift2.x开始,有一些与你的Python样式列表解析相当的东西。(在这个意义上,它更像是Python的xrange。如果你想保持集合懒惰一路通过,只是这样说:与Python中的列表解析语法不同,Swift中的这些操作遵循与其他操作相同的语法。

  8. swift抛出终端的python错误

    每当我尝试启动与python相关的swift时,我都会收到错误.我该如何解决?

  9. 在Android上用Java嵌入Python

    解决方法看看this,它适用于J2SE,你可以尝试在Android上运行.

  10. 在android studio中使用python代码构建android应用程序

    我有一些python代码和它的机器人,我正在寻找一种方法来使用android项目中的那些python代码.有没有办法做到这一点!?解决方法有两种主要工具可供使用,它们彼此不同:>QPython>Kivy使用Kivy,大致相同的代码也可以部署到IOS.

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部