前言

图像的轮廓检测不论是机器视觉还是其他方面都有较大作用,本文将基与Python3.7和OpenCV4.3对静态图像进行轮廓检测。最终以方框的形式框出目标图像。

函数基础与三方库

本文所用的第三方库是Opencv4.3

导入第三方库

import cv2 as cv

由于Opencv显示图像比较麻烦,与matlab或matplob不一致,考虑到基础薄弱可能对此库的图像显示机制不了解,在此我先定义一个img_show函数,目的是更方便的显示图像。

def img_show(pic,name):
'''
此函数img_show()用于调用OpenCV的相关函数来进行图像展示
name为显示图像窗口的名称(name为字符串)
pic为被显示图像(pic为opencv imread进来的图片)
'''
    cv.imshow(pic,name)
    cv.waitkey(0)
    cv.destroyAllWindows()

cv.threshold(pic,thresh,maxvalue,model)

此函数用于图像单通道不同阈值的操作,一般用来将图像进行二值化处理,二值化处理将有助于边缘检测的梯度计算。
其中pic为待处理图片,由于是对单通道处理,所以pic一般要转换为灰度图

thresh为操作阈值,高于这个阈值的将根据不同的model统一成 0 或 maxvalue

model为操作方法,一般只需要cv.THRESH_BINARY_INV和cv.THRESH_BINARY

…THRESH_BINARY_INV 将大于thresh的设置为0

…THRESH_BINARY 将大于thresh的设置为255

该图像有两个返回值,第一个返回值为阈值,即thresh值,第二个为二值图像的矩阵

cv.findContours(待处理图片,model(提取模式),method(提取方法))

此函数用于提取pic的轮廓点,pic为二值图像时,函数提取将更加精准

model 为提取模式 一般用到cv.RETR_EXTERNAL和cv.RETR_TREE

…Extrnal为以外层轮廓的方式进行提取

…Tree则提取图像内外层所有轮廓

method 为提取方法,有cv.CHAIN_APPROX_NONE和cv.CHAIN_APPROX_SIMPLE

…NONE为以线的方式连接提取出来的轮廓

…SIMPLE则压缩了线和斜边,只标记了轮廓的各个顶点

此函数的返回值有两个,一个是边缘点(列表形式),一个是层次信息

contours,hierarchy = cv.findContours(pic,cv.RETR_EXTERNAL,cv.CHAIN_APPROX_NONE)

此段代码的意思是

基于pic 此图像

使用描述外轮廓的模式

通过各个点链接的方式进行轮廓提取

最终得到轮廓列表集合contours和层次关系hierarchy

注:在contours里面有非常多的轮廓集合,比如contours[0]\contours[1]\contours[2]是三个轮廓,可能只有1是目标轮廓,其他均为噪声轮廓

cv.drawContours(画布,轮廓集合,索引,颜色,粗细)

此函数用于在指定画布,用指定颜色粗细的线画出指定轮廓(索引判断)或所有轮廓(-1)

画布:将轮廓点画在画布上,一般是代替去图片的copy图,不然会污染原图。

轮廓集合:上文中提到的contours,其中包含了目标轮廓和噪声轮廓的所有轮廓

索引:选定轮廓集合中的某一轮廓,如果你知道目标轮廓的编号可以直接写,如果不知道就写-1,可以画出所有轮廓

颜色: 元组形式,(255,0,0)为红色,以此类推

粗细:轮廓的粗细 1~任意整数,太大会覆盖原图

cv.boundingRect(图像)

此函数用于将检测的函数进行矩阵点的查找

图像:被检测的图像,一般是传入目标的轮廓,即contours[index],index为目标编号

此函数会返回四个值:x,y,w,h

其中x,y指的是该图像x轴上最小值和y轴最小值(有左上角为原点时),w,h跟别指的囊括图像所有的宽和高

代码实现

#导入opencv
import cv2 as cv

#定义opencv的图像显示函数
def img_show(pic,name):
    cv.imshow(pic,name)
    cv.waitKey(0)
    cv.destroyAllWindows()

#彩色模式读入图片
eagle_o = cv.imread('eagle.png',1)
# 图片转为灰度图
eagle = cv.cvtColor(eagle_o,cv.COLOR_BGR2GRAY)
# 将图像转换为二值图
ret,eagle_2v = cv.threshold(eagle,125,255,cv.THRESH_BINARY_INV) #ret为阈值,eagl_2v为二值图
# 基于二值图像用外轮廓的模式,通过全点连接轮廓的方法提取轮廓
contours,hierarchy = cv.findContours(eagle_2v,cv.RETR_EXTERNAL,cv.CHAIN_APPROX_NONE)
# 在copy图上画出所有轮廓
img = cv.drawContours(eagle_o.copy(),contours,-1,(255,25,0),5)
# 获取目标图像的最小矩阵,此处29为目标的轮廓
x,y,w,h = cv.boundingRect(contours[29])
# 绘制目标框
img = cv.rectangle(eagle_o,(x,y),(x w,y h),(255,255,0),7)
img_show('goal',img)

实现效果

总结

到此这篇关于如何利用Python OpenCV实现简易图像边缘轮廓检测的文章就介绍到这了,更多相关Python OpenCV图像边缘轮廓检测内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

如何利用Python+OpenCV实现简易图像边缘轮廓检测(零基础)的更多相关文章

  1. iOS使用openCV检测来自摄像头的矩形

    如果我在处理它之前克隆matimage,通过记录它,它似乎处理图像甚至找到矩形,但矩形不会被绘制到图像输出到imageView.我很确定我错过了一些东西,可能是因为我没有正确传递某个对象,指向对象的指针等等,而我需要修改的对象则没有.无论如何,如果这不是正确的方法,我真的很感谢他们做这样的事情的教程或例子,使用openCV或GPUImage…它不需要尝试使用matimage来设置imageView.image,而只需要将matimage转换为在imageView中实际修改,因为CvVideoCamera已

  2. 使用Xcode为OS X Lion / Mountain Lion编译OpenCV(2.3.1)

    任何人都可以为我提供一些如何使用Xcode在OSXLion上编译OpenCV2.3.1的详细指南吗?我对此感到生气…我得到了源码,使用cmake创建Xcode模板并尝试构建它,但它失败了大约200个错误.提前致谢,大教堂解答我的回答帖子.解决方法详细指南如何使用MacPorts在Xcode4.2.1的OSXLion下启动和运行OpenCV2.3.1编辑08/06/2012:这也适用于OpenCV2.4.1.只需确保您获得最新版本的Xcode并安装“命令行工具”.编辑15/08/2012:使用Mountai

  3. ios – OpenCV构建问题,找不到ext/atomicity.h

    我得到编译器错误抱怨在构建包含OpenCV的项目时.环境是针对iOS的Xcode4.5.它为模拟器编译良好,但在为设备构建时失败.这是错误文本:我正在使用opencv2.framework,使用指令here构建cmake.解决方法默认情况下,XCode4.5使用libc(支持C11的LLVMC标准库)生成要构建的新项目.但OpenCV期望针对GNUlibstd

  4. 从IOS / iPad / iPhone的最大速度

    我使用OpenCVforiOS完成计算密集型应用程序.当然这很慢.但它比我的PC原型慢了200倍.所以我正在优化它.从最初的15秒,我能够获得0.4秒的速度.我想知道我是否找到了所有的东西以及别人想要分享的东西.我做了什么:>将OpenCV中的“double”数据类型替换为“float”.双倍是64位,32位cpu不能轻易处理,所以浮动给了我一些速度.OpenCV经常使用双倍.>为编译器选项添加了

  5. 在Swift iOS中使用OpenCV

    在我的xcode项目中添加OpenCV2框架后,我试图搜索samlpes或教程与swift集成。有什么好的教程同样吗?OpenCV是用C编写的框架。苹果的reference告诉我们YoucannotimportC++codedirectlyintoSwift.Instead,createanObjective-CorCwrapperforC++code.所以你不能在一个swift项目中直接导入和使用OpenCV,但这实际上并不坏,因为你(需要)继续使用框架的C语法,这是在网络上有很多文档。那么你怎么进行呢

  6. 在Android Studio中解决已弃用的NDK警告

    或者除了添加所有已编译的代码并设置我之前提到的标志之外,还有其他方法可以将OpenCV导入Android项目吗?任何有关这方面的帮助将不胜感激.解决方法我建议迁移到使用cmake的本机支持.您可以查看链接,该链接提供了使用cmake通过以下link添加OpenCV的分步教程.您的代码应该保持不变而不做任何更改,只有必要的操作才能弄清楚如何使用CMakeLists.txt将它们包含在构建过程中.

  7. android – opencv管理器包没找到?如何自动安装?

    我正在使用openCV,每当我运行代码时它都会给我包管理器没有安装,那么如何通过我的应用程序安装它.是必须从Play商店下载它还是我们可以在设备中自动安装它.请帮我.提前致谢.解决方法您需要使用静态初始化来包含apk中的所有OpenCV二进制文件.请参阅此文档:ApplicationDevelopmentwithStaticInitialization

  8. 如何从Android相机中找到框架的轮廓并将其转换为box2d实体?

    使用openframeworks,OpenCV和Box2D,我能够以良好的帧速率实现它.使用Android似乎是一项更复杂的任务(部分原因是我是JAVA新手).这就是我的开始:>使用“OpenCV示例–图像处理”并删除除“canny”效果之外的所有内容,这会产生一个漂亮的黑色&白色图像,非常适合找到轮廓.>从“OpenCVSample–color-blob-detection”中我抓住了在Mat中

  9. 在Android上的OpenCV中逐帧处理视频

    如果是的话,你知道任何例子.>编译适用于Android的FFMPEG也是一种选择.但是,我认为自己编写FrameGrabber和FrameRecorder有点过分.我认为除了JavaCV之外,还必须存在一些解决方案.>从API18开始,Android中有MediaCodec和Mediamuxer.也许他们可以帮助我?

  10. 使用opencv进行android角点跟踪

    当我相对于Android相机移动它时,我试图跟踪一张纸的角落的位置(您可以假设纸张将是与背景完全不同的颜色).我想找到android屏幕上每个角落的x,y坐标.我也希望能够改变纸张的角度,因此它不一定会一直呈现出完美的矩形.我正在使用opencv2.4.1forAndroid,但我在包中找不到cvgoodfeaturetotrack或cvfindcornersubpix.现在我正在考虑使用CvCa

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部