前言

Open Neural Network Exchange (ONNX,开放神经网络交换) 格式,是一个用于表示深度学习模型的标准,可使模型在不同框架之间进行转移

PyTorch 所定义的模型为动态图,其前向传播是由类方法定义和实现的

但是 Python 代码的效率是比较底下的,试想把动态图转化为静态图,模型的推理速度应当有所提升

PyTorch 框架中,torch.onnx.export 可以将父类为 nn.Module 的模型导出到 onnx 文件中,

最重要的有三个参数:

  • model:父类为 nn.Module 的模型
  • args:传入 model 的 forward 方法的变量列表,类型应为
  • tuplef:onnx 文件名称的字符串
import torch
from torchvision.models import resnet50
 
file = 'resnet.onnx'
# 声明模型
resnet = resnet50(pretrained=False).eval()
image = torch.rand([1, 3, 224, 224])
# 导出为 onnx 文件
torch.onnx.export(resnet, (image,), file)

onnx 文件可被 Netron 打开,以查看模型结构

基本用法

要在 Python 中运行 onnx 模型,需要下载 onnxruntime

# 选其一即可
pip install onnxruntime        # CPU 版本
pip install onnxruntime-gpu    # GPU 版本

推理时需要借助其中的 InferenceSession,其中较为重要的实例方法有:

  • get_inputs():得到输入变量的列表 (变量属性:name、shape、type)
  • get_outputs():得到输入变量的列表 (变量属性:name、shape、type)run(output_names, input_feed):输入变量为 numpy.ndarray (注意 dtype 应为 float32),使用模型推理并返回输出

可得出 onnx 模型的基本用法:

import onnxruntime as ort
import numpy as np
file = 'resnet.onnx'
# 找到 GPU / CPU
provider = ort.get_available_providers()[
    1 if ort.get_device() == 'GPU' else 0]
print('设备:', provider)
# 声明 onnx 模型
model = ort.InferenceSession(file, providers=[provider])
# 参考: ort.NodeArg
for node_list in model.get_inputs(), model.get_outputs():
    for node in node_list:
        attr = {'name': node.name,
                'shape': node.shape,
                'type': node.type}
        print(attr)
    print('-' * 60)
 
# 得到输入、输出结点的名称
input_node_name = model.get_inputs()[0].name
ouput_node_name = [node.name for node in model.get_outputs()]
image = np.random.random([1, 3, 224, 224]).astype(np.float32)
print(model.run(output_names=ouput_node_name,
                input_feed={input_node_name: image}))

高级 API

为了简化使用步骤,使用类进行封装:

class Onnx_Module(ort.InferenceSession):
    ''' onnx 推理模型
        provider: 优先使用 GPU'''
    provider = ort.get_available_providers()[
        1 if ort.get_device() == 'GPU' else 0]
 
    def __init__(self, file):
        super(Onnx_Module, self).__init__(file, providers=[self.provider])
        # 参考: ort.NodeArg
        self.inputs = [node_arg.name for node_arg in self.get_inputs()]
        self.outputs = [node_arg.name for node_arg in self.get_outputs()]
 
    def __call__(self, *arrays):
        input_feed = {name: x for name, x in zip(self.inputs, arrays)}
        return self.run(self.outputs, input_feed)

在 PyTorch 中,对于卷积神经网络 model 与图像 image,推理的代码为 "model(image)",而使用这个封装的类也是类似:

import numpy as np
file = 'resnet.onnx'
model = Onnx_Module(file)
image = np.random.random([1, 3, 224, 224]).astype(np.float32)
print(model(image))

为了方便观察 Torch 模型与 onnx 模型的速度差异,同时检查两个模型的输出是否一致,又编写了 test 函数

test 方法的参数与 torch.onnx.export 一致,其基本流程为:

  • 得到 Torch 模型的输出,并 print 推断耗时
  • 将 Torch 模型导出为 onnx 文件,将输入变量中的 torch.tensor 转化为 numpy.ndarray
  • 初始化 onnx 模型,得到 onnx 模型的输出,并 print 推断耗时
  • 计算 Torch 模型与 onnx 模型输出的绝对误差的均值
  • 将 onnx 模型 return
class Timer:
    repeat = 3
 
    def __new__(cls, fun, *args, **kwargs):
        import time
        start = time.time()
        for _ in range(cls.repeat): fun(*args, **kwargs)
        cost = (time.time() - start) / cls.repeat
        return cost * 1e3  # ms
 
 
class Onnx_Module(ort.InferenceSession):
    ''' onnx 推理模型
        provider: 优先使用 GPU'''
    provider = ort.get_available_providers()[
        1 if ort.get_device() == 'GPU' else 0]
 
    def __init__(self, file):
        super(Onnx_Module, self).__init__(file, providers=[self.provider])
        # 参考: ort.NodeArg
        self.inputs = [node_arg.name for node_arg in self.get_inputs()]
        self.outputs = [node_arg.name for node_arg in self.get_outputs()]
    def __call__(self, *arrays):
        input_feed = {name: x for name, x in zip(self.inputs, arrays)}
        return self.run(self.outputs, input_feed)
 
    @classmethod
    def test(cls, model, args, file, **export_kwargs):
        # 测试 Torch 的运行时间
        torch_output = model(*args).data.numpy()
        print(f'Torch: {Timer(model, *args):.2f} ms')
        # model: Torch -> onnx
        torch.onnx.export(model, args, file, **export_kwargs)
        # data: tensor -> array
        args = tuple(map(lambda tensor: tensor.data.numpy(), args))
        onnx_model = cls(file)
        # 测试 onnx 的运行时间
        onnx_output = onnx_model(*args)
        print(f'Onnx: {Timer(onnx_model, *args):.2f} ms')
        # 计算 Torch 模型与 onnx 模型输出的绝对误差
        abs_error = np.abs(torch_output - onnx_output).mean()
        print(f'Mean Error: {abs_error:.2f}')
        return onnx_model

对于 ResNet50 而言,Torch 模型的推断耗时为 172.67 ms,onnx 模型的推断耗时为 36.56 ms,onnx 模型的推断耗时仅为 Torch 模型的 21.17%

到此这篇关于PyTorch 模型 onnx 文件导出及调用详情的文章就介绍到这了,更多相关PyTorch文件导出内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

PyTorch 模型 onnx 文件导出及调用详情的更多相关文章

  1. PHP实现文件安全下载

    例如你希望客户要填完一份表格,才可以下载某一文件,你第一个想法一定是用"Redirect"的方法,先检查表格是否已经填写完毕和完整,然后就将网址指到该文件,这样客户才能下载,但如果你想做一个关于"网上购物"的电子商务网站,考虑安全问题,你不想用户直接复制网址下载该文件,笔者建议你使用PHP直接读取该实际文件然后下载的方法去做。feof){echofread;}fclose;}这样就可以用PHP直接输出文件了。

  2. node下使用UglifyJS压缩合并JS文件的方法

    下面小编就为大家分享一篇node下使用UglifyJS压缩合并JS文件的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

  3. Node的文件系统你了解多少

    这篇文章主要为大家详细介绍了Node的文件系统,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助

  4. laravel框架模型中非静态方法也能静态调用的原理分析

    这篇文章主要介绍了laravel框架模型中非静态方法也能静态调用的原理,结合实例形式分析了laravel模型基类中使用魔术方法实现非静态方法进行静态调用的相关原理,需要的朋友可以参考下

  5. PHP导出带样式的Excel示例代码

    相信大家在工作的时候有客户会向你抱怨,软件为他们导出的Excel格式太难看了,这个时候我们就需要到处自定义样式的Excel了,那么或许这篇文章会对你有所帮助,有需要的可以参考借鉴。

  6. Python 如何实时向文件写入数据(附代码)

    这篇文章主要介绍了Python 如何实时向文件写入数据(附代码),具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Python利用watchdog模块监控文件变化

    这篇文章主要为大家介绍一个Python中的模块:watchdog模块,它可以实现监控文件的变化。文中通过示例详细介绍了watchdog模块的使用,需要的可以参考一下

  8. nodejs中函数的调用实例详解

    本文通过实例代码给大家介绍了nodejs函数的调用,代码简单易懂,非常不错,具有一定的参考借鉴价值,需要的朋友可以参考下

  9. js调用网络摄像头的方法

    这篇文章主要介绍了js调用网络摄像头的方法,帮助大家更好的理解和使用JavaScript,感兴趣的朋友可以了解下

  10. 如何防止IE缓存jsp文件

    1,使用java提供的方法,在jsp或者servlet中都可以2,使用HTML标记,如下面:

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部