简单使用csv.DictReader()方法

示例代码1:

import csv
f = open('sample','r',encoding='utf8')
reader = csv.DictReader(f)
print(reader) # <csv.DictReader object at 0x000002241D730FD0>
for line in reader: # reader为了方便理解我们可以把它看成是一个列表嵌套OrderedDict(一种长相类似于列表的数据类型)
    print(line) # OrderedDict([('id', '1'), ('name', 'jason'), ('age', '18')]) 

sample为一个txt文件,文件内容如下:

id,name,age
1,jason,18
2,jian,20
3,xiaoming,30
4,dog,40

代码运行在终端输出的结果为:

<csv.DictReader object at 0x000001FCF6FA0FD0>    # 来自于示例代码1中的print(reader)
OrderedDict([('id', '1'), ('name', 'jason'), ('age', '18')])    # 来自于示例代码1中的print(line)
1 jason 18    # 来自于示例代码1中的print(line['id'],line['name'],line['age'])
OrderedDict([('id', '2'), ('name', 'jian'), ('age', '20')])
2 jian 20
OrderedDict([('id', '3'), ('name', 'xiaoming'), ('age', '30')])
3 xiaoming 30
OrderedDict([('id', '4'), ('name', 'dog'), ('age', '40')])
4 dog 40

OrderedDict是一种长相类似于列表的数据类型,该列表中嵌套着元组例:line = OrderedDict([('id', '1'), ('name', 'jason'), ('age', '18')]),每个元组中的第一个元素为键,第二个元素为值(类似于字典),每个元组中的键是哪里来的呢?==默认情况下(可以自己设置的)==csv.DictReader()读到的第一行数据就是键。并且可以通过索引的方法来取出OrderedDict数据中的值print(line['id'],line['name'],line['age']) # 可以通过键进行索引取值(类似于字典)。

使用csv.DictReader()之fieldnames参数

在reader = csv.DictReader(f,fieldnames=['new_id','new_name','new_age'])中添加参数fieldnames=['new_id','new_name','new_age']用来指定键。

示例代码2:

import csv
f = open('sample','r',encoding='utf8')
# 通过fieldnames参数指定字段
reader = csv.DictReader(f,fieldnames=['new_id','new_name','new_age'])
head_row = next(reader) # next()方法用于移动指针
print(reader) # <csv.DictReader object at 0x000002241D730FD0>
for line in reader: # reader为了方便理解我们可以把它看成是一个列表嵌套OrderedDict(一种长相类似于列表的数据类型)
    print(line) # OrderedDict([('new_id', '2'), ('new_name', 'jian'), ('new_age', '20')]) 
    # 通过指定的字段进行索引取值并打印输出
    print(line['new_id'],line['new_name'],line['new_age']) # 可以通过键进行索引取值(类似于字典)

next()方法用于移动指针,示例代码2中的head_row = next(reader)获取的是第一行数据存储在head_row中,执行一次next()指针移动一行,此时指针已经移动到了第二行开头,再次读数据的时候,就从第二行开始读取。如果不执行head_row = next(reader)则输出中还会多出这样的结果OrderedDict([('new_id', 'id'), ('new_name', 'name'), ('new_age', 'age')])第一行数据也被算在了其中。

代码运行在终端输出的结果为:

<csv.DictReader object at 0x000001D329CF2080>    # 来自于示例代码2的print(reader) 
OrderedDict([('new_id', '1'), ('new_name', 'jason'), ('new_age', '18')])    # 来自于示例代码2的print(line)
1 jason 18    # 来自于示例代码2的print(line['new_id'],line['new_name'],line['new_age'])
OrderedDict([('new_id', '2'), ('new_name', 'jian'), ('new_age', '20')])
2 jian 20
OrderedDict([('new_id', '3'), ('new_name', 'xiaoming'), ('new_age', '30')])
3 xiaoming 30
OrderedDict([('new_id', '4'), ('new_name', 'dog'), ('new_age', '40')])
4 dog 40

使用csv.DictReader()之restkey参数

如果读取的行具有比键名序列更多的值,此时则会将剩余的数据作为值添加到restkey中的键下面。此时我们修改sample文件多添加一列数据。
在reader = csv.DictReader(f,fieldnames=['new_id','new_name','new_age'],restkey='hobby')中添加restkey='hobby'用来指定接收多余值的键,并且要注意restkey只能传入一个值,不能传入列表,元组数据类型。

sample为一个txt文件,文件内容如下:

id,name,age
1,jason,18,dbj
2,jian,20,lol
3,xiaoming,30,game
4,dog,40,noting

示例代码3:

import csv
f = open('sample','r',encoding='utf8')
# 通过fieldnames参数指定字段,超出fieldnames中键数量的值,用restkey中的键来接收
reader = csv.DictReader(f,fieldnames=['new_id','new_name','new_age'],restkey='hobby')
head_row = next(reader) # next用于移动指针
print(reader) # <csv.DictReader object at 0x000002241D730FD0>
for line in reader: # reader为了方便理解我们可以把它看成是一个列表嵌套OrderedDict(一种长相类似于列表的数据类型)
    print(line) # OrderedDict([('new_id', '2'), ('new_name', 'jian'), ('new_age', '20')]) 
    # 通过指定的字段进行索引取值并打印输出
    print(line['new_id'],line['new_name'],line['new_age'],line['hobby']) # 可以通过键进行索引取值(类似于字典)

代码运行在终端输出的结果为:

<csv.DictReader object at 0x000001CB6B6030F0>    # 来自于示例代码3的print(reader) 
OrderedDict([('new_id', '1'), ('new_name', 'jason'), ('new_age', '18'), ('hobby', ['dbj'])]) # 来自于示例代码3的print(line)
1 jason 18    # 来自于示例代码3的print(line['new_id'],line['new_name'],line['new_age'])
OrderedDict([('new_id', '2'), ('new_name', 'jian'), ('new_age', '20'), ('hobby', ['lol'])])
2 jian 20
OrderedDict([('new_id', '3'), ('new_name', 'xiaoming'), ('new_age', '30'), ('hobby', ['game'])])
3 xiaoming 30
OrderedDict([('new_id', '4'), ('new_name', 'dog'), ('new_age', '40'), ('hobby', ['noting'])])
4 dog 40

从代码运行结果中我们会发现多出来的值,确实使用restkey指定的键restkey='hobby'来接收了OrderedDict([('new_id', '1'), ('new_name', 'jason'), ('new_age', '18'), ('hobby', ['dbj'])])
注意虽然多余的键可以用restkey指定的键接收,但是却无法通过索引打印出来,也就是执行print(line["hobby"])的话就会报错KeyError: 'hobby'。

使用csv.DictReader()之restval参数

如果读取的行具有比键名序列更少的值,此时剩余的键则会使用可选参数restval中的值。此时我们修改sample文件多添加一列数据。
在reader = csv.DictReader(f,fieldnames=['new_id','new_name','new_age','hobby'],restval='others')中添加restval='others'用来指定键对应值为空时的默认值,并且要注意restval也只能传入一个值,不能传入列表,元组数据类型。

sample为一个txt文件,文件内容如下:

id,name,age
1,jason,18
2,jian,20,lol
3,xiaoming,30
4,dog,40,noting

示例代码4:

import csv
f = open('sample','r',encoding='utf8')
# 通过fieldnames参数指定字段,超出fieldnames中键数量的值,用restkey中的键来接收
reader = csv.DictReader(f,fieldnames=['new_id','new_name','new_age','hobby'],restval='others')
head_row = next(reader) # next用于移动指针
# print(reader) # <csv.DictReader object at 0x000002241D730FD0>
for line in reader: # reader为了方便理解我们可以把它看成是一个列表嵌套OrderedDict(一种长相类似于列表的数据类型)
    print(line) # OrderedDict([('new_id', '1'), ('new_name', 'jason'), ('new_age', '18'), ('hobby', 'others')]) 
    # 通过指定的字段进行索引取值并打印输出
    print(line['new_id'],line['new_name'],line['new_age'],line['hobby']) # 可以通过键进行索引取值(类似于字典)

代码运行在终端输出的结果为:

OrderedDict([('new_id', '1'), ('new_name', 'jason'), ('new_age', '18'), ('hobby', 'others')])  # 来自于示例代码4的print(line)
1 jason 18 others  # 来自于示例代码4的print(line['new_id'],line['new_name'],line['new_age'],line['hobby'])
OrderedDict([('new_id', '2'), ('new_name', 'jian'), ('new_age', '20'), ('hobby', 'lol')])
2 jian 20 lol
OrderedDict([('new_id', '3'), ('new_name', 'xiaoming'), ('new_age', '30'), ('hobby', 'others')])3 xiaoming 30 others
OrderedDict([('new_id', '4'), ('new_name', 'dog'), ('new_age', '40'), ('hobby', 'noting')])
4 dog 40 noting

到此这篇关于python操作csv格式文件之csv.DictReader()方法的文章就介绍到这了,更多相关python csv.DictReader方法内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

python操作csv格式文件之csv.DictReader()方法的更多相关文章

  1. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  2. ios – 如何从Core Data创建CSV文件(swift)

    我正在构建一个带有核心数据的应用程序,它们显示在tableView中.现在我想将这些数据导出到CSV文件,这样我就可以在windows上的excel中打开它.我搜索了很多,但没有找到正确的答案.有人可以帮助我或给我一个良好的解释或教程的链接?

  3. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  4. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  5. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  6. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  7. 你没看错:Swift可以直接调用Python函数库

    上周Perfect又推出了新一轮服务器端Swift增强函数库:Perfect-Python。对,你没看错,在服务器端Swift其实可以轻松从其他语种的函数库中直接拿来调用,不需要修改任何内容。以如下python脚本为例:Perfect-Python可以用下列方法封装并调用以上函数,您所需要注意的仅仅是其函数名称以及参数。

  8. Swift中的列表解析

    在Swift中完成这个的最简单的方法是什么?我在寻找类似的东西:从Swift2.x开始,有一些与你的Python样式列表解析相当的东西。(在这个意义上,它更像是Python的xrange。如果你想保持集合懒惰一路通过,只是这样说:与Python中的列表解析语法不同,Swift中的这些操作遵循与其他操作相同的语法。

  9. swift 3.1如何从CSV获取数组或字典

    我怎样才能在这种CSV文件中使用数据?或者我如何打印“内部”列的第2行值并将其分配给属性/实体?我有这种从excel文件转换为Numbers的文件,我想抓取每列的数据并使用它们.原始CSV文件以数字打开:我得到的控制台输出:使用这种方法:解决方案感谢JensMeder运用在viewDidLoad中你想要做的是将字符串分成行然后分成列.Swift已经为String结构提供了components方法.然后您可以通过以下方式访问任何值

  10. 数组 – 将.csv数据导入数组

    我在过去几年使用Objective-C.现在我正在尝试Xcode6beta4与迅速.我想导入一个.csv表单我的webserver到一个数组.我在Objective-C中的旧代码是:我怎么可以在Swift这样做?有最佳做法–推荐吗?有多个swift库可用:CSVImporter,它是一个适用于处理大型csv文件的异步解析器.SwiftCSV,它是一个用于OSX和iOS的简单CSV解析库.和CSwiftV,它是符合rfc4180规范的csv解析器,但根据作者,它全部在内存中,因此不适合大文件.

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部