一、选择图片

从选择图像开始。 例如,我将使用下面的海水和椰子树的照片。

二、创建脚本

1、导入相关库

接下来,让我们导入 extcolors 和 rgb2hex 库。 extcolors 库返回 RGB 值,将使用 rgb2hex 库将其转换为 HEX 颜色代码。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import matplotlib.image as mpimg
 
from PIL import Image
from matplotlib.offsetbox import OffsetImage, AnnotationBbox

如果在导入这两个库时出现一些错误,您可以尝试安装一些必备库以使其工作。 这些库在下面的代码中。 删除 !pip 前面的 # 符号并运行以安装它们。 请不要删除版本号前的#符号。 它们只是笔记。

#!pip install easydev                 #version 0.12.0
#!pip install colormap                #version 1.0.4
#!pip install opencv-python           #version 4.5.5.64
#!pip install colorgram.py            #version 1.2.0
#!pip install extcolors               #version 1.0.0
import cv2
import extcolors
from colormap import rgb2hex

2、创建方法

接下来,我将逐步解释如何创建用于颜色提取的函数。 如果你想直接得到函数,请给定义一个函数打分。

调整图像大小

从准备输入图像开始。 用现代相机和手机拍摄的照片太大了。 有些人可以拍摄超过 50 兆像素的照片(4K 显示器只能显示大约 8.3 兆像素)。 如果我们直接使用一个巨大的图像,处理可能需要一些时间。

因此,首先要做的是调整大小。 下面的代码显示了如何将图片的大小调整为 900 像素的宽度。 如果图像不是很大或者你的 CPU 速度很快,这一步可以省略,或者可以增加输出分辨率数。 请注意,调整照片大小后,新照片将保存在您的计算机上以供下一步阅读。

input_name = '<photo location/name>'
output_width = 900                   #set the output size
img = Image.open(input_name)
wpercent = (output_width/float(img.size[0]))
hsize = int((float(img.size[1])*float(wpercent)))
img = img.resize((output_width,hsize), Image.ANTIALIAS)
 
#save
resize_name = 'resize_'   input_name  #the resized image name
img.save(resize_name)                 #output location can be specified before resize_name
 
#read
plt.figure(figsize=(9, 9))
img_url = resize_name
img = plt.imread(img_url)
plt.imshow(img)
plt.axis('off')
plt.show()

颜色提取

使用 extcolors 库提取颜色。 我们必须设置的参数:

容差:对颜色进行分组以限制输出并提供更好的视觉表示。 基于从 0 到 100 的比例。其中 0 不会对任何颜色进行分组,而 100 会将所有颜色归为一个。

限制:输出中呈现的提取颜色数量的上限。

在下面的代码中,我将公差值设置为 12,并将颜色代码输出的数量限制为 11 种颜色(limit=12)。 可以根据需要更改数字。 获得的结果将是 RGB 颜色代码及其出现。

colors_x = extcolors.extract_from_path(img_url, tolerance = 12, limit = 12)
colors_x

使用 rgb2hex 库定义一个函数以将 RGB 代码转换为 HEX 颜色代码并创建一个 DataFrame。

def color_to_df(input):
    colors_pre_list = str(input).replace('([(','').split(', (')[0:-1]
    df_rgb = [i.split('), ')[0]   ')' for i in colors_pre_list]
    df_percent = [i.split('), ')[1].replace(')','') for i in colors_pre_list]
    
    #convert RGB to HEX code
    df_color_up = [rgb2hex(int(i.split(", ")[0].replace("(","")),
                          int(i.split(", ")[1]),
                          int(i.split(", ")[2].replace(")",""))) for i in df_rgb]
    
    df = pd.DataFrame(zip(df_color_up, df_percent), columns = ['c_code','occurence'])
    return df
 
df_color = color_to_df(colors_x)
df_color

绘制图标

list_color = list(df_color['c_code'])
list_precent = [int(i) for i in list(df_color['occurence'])]
text_c = [c   ' '   str(round(p*100/sum(list_precent),1))  '%' for c, p in zip(list_color,
                                                                               list_precent)]
fig, ax = plt.subplots(figsize=(90,90),dpi=10)
wedges, text = ax.pie(list_precent,
                      labels= text_c,
                      labeldistance= 1.05,
                      colors = list_color,
                      textprops={'fontsize': 120, 'color':'black'}
                     )
plt.setp(wedges, width=0.3)
 
#create space in the center
plt.setp(wedges, width=0.36)
 
ax.set_aspect("equal")
fig.set_facecolor('white')
plt.show()

#create background color
fig, ax = plt.subplots(figsize=(192,108),dpi=10)
fig.set_facecolor('white')
plt.savefig('bg.png')
plt.close(fig)
 
#create color palette
bg = plt.imread('bg.png')
fig = plt.figure(figsize=(90, 90), dpi = 10)
ax = fig.add_subplot(1,1,1)
 
x_posi, y_posi, y_posi2 = 320, 25, 25
for c in list_color:
    if  list_color.index(c) <= 5:
        y_posi  = 125
        rect = patches.Rectangle((x_posi, y_posi), 290, 115, facecolor = c)
        ax.add_patch(rect)
        ax.text(x = x_posi 360, y = y_posi 80, s = c, fontdict={'fontsize': 150})
    else:
        y_posi2  = 125
        rect = patches.Rectangle((x_posi   800, y_posi2), 290, 115, facecolor = c)
        ax.add_artist(rect)
        ax.text(x = x_posi 1160, y = y_posi2 80, s = c, fontdict={'fontsize': 150})
        
ax.axis('off')
plt.imshow(bg)
plt.tight_layout()

三、完整代码

我为了省事,resize路径被写在程序了,请注意根据自己的情况修改。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import matplotlib.image as mpimg
 
from PIL import Image
from matplotlib.offsetbox import OffsetImage, AnnotationBbox
 
import cv2
import extcolors
 
from colormap import rgb2hex
 
def color_to_df(input):
    colors_pre_list = str(input).replace('([(', '').split(', (')[0:-1]
    df_rgb = [i.split('), ')[0]   ')' for i in colors_pre_list]
    df_percent = [i.split('), ')[1].replace(')', '') for i in colors_pre_list]
 
    # convert RGB to HEX code
    df_color_up = [rgb2hex(int(i.split(", ")[0].replace("(", "")),
                           int(i.split(", ")[1]),
                           int(i.split(", ")[2].replace(")", ""))) for i in df_rgb]
 
    df = pd.DataFrame(zip(df_color_up, df_percent), columns=['c_code', 'occurence'])
    return df
 
 
def exact_color(input_image, resize, tolerance, zoom):
    # background
    bg = 'bg.png'
    fig, ax = plt.subplots(figsize=(192, 108), dpi=10)
    fig.set_facecolor('white')
    plt.savefig(bg)
    plt.close(fig)
 
    # resize
    output_width = resize
    img = Image.open(input_image)
    if img.size[0] >= resize:
        wpercent = (output_width / float(img.size[0]))
        hsize = int((float(img.size[1]) * float(wpercent)))
        img = img.resize((output_width, hsize), Image.ANTIALIAS)
        resize_name = 'C:/Users/zyh/Desktop/resize_456.jpg'
        img.save(resize_name)
    else:
        resize_name = input_image
 
    # crate dataframe
    img_url = resize_name
    colors_x = extcolors.extract_from_path(img_url, tolerance=tolerance, limit=13)
    df_color = color_to_df(colors_x)
 
    # annotate text
    list_color = list(df_color['c_code'])
    list_precent = [int(i) for i in list(df_color['occurence'])]
    text_c = [c   ' '   str(round(p * 100 / sum(list_precent), 1))   '%' for c, p in zip(list_color, list_precent)]
    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(160, 120), dpi=10)
 
    # donut plot
    wedges, text = ax1.pie(list_precent,
                           labels=text_c,
                           labeldistance=1.05,
                           colors=list_color,
                           textprops={'fontsize': 150, 'color': 'black'})
    plt.setp(wedges, width=0.3)
 
    # add image in the center of donut plot
    img = mpimg.imread(resize_name)
    imagebox = OffsetImage(img, zoom=zoom)
    ab = AnnotationBbox(imagebox, (0, 0))
    ax1.add_artist(ab)
 
    # color palette
    x_posi, y_posi, y_posi2 = 160, -170, -170
    for c in list_color:
        if list_color.index(c) <= 5:
            y_posi  = 180
            rect = patches.Rectangle((x_posi, y_posi), 360, 160, facecolor=c)
            ax2.add_patch(rect)
            ax2.text(x=x_posi   400, y=y_posi   100, s=c, fontdict={'fontsize': 190})
        else:
            y_posi2  = 180
            rect = patches.Rectangle((x_posi   1000, y_posi2), 360, 160, facecolor=c)
            ax2.add_artist(rect)
            ax2.text(x=x_posi   1400, y=y_posi2   100, s=c, fontdict={'fontsize': 190})
 
    fig.set_facecolor('white')
    ax2.axis('off')
    bg = plt.imread('bg.png')
    plt.imshow(bg)
    plt.tight_layout()
    return plt.show()
exact_color('C:/Users/zyh/Desktop/456.jpg', 900, 12, 2.5)

运行结果如下

到此这篇关于使用Python进行图像颜色量化的文章就介绍到这了,更多相关Python图像颜色量化内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

使用Python实现图像颜色量化的方法的更多相关文章

  1. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  2. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  3. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  4. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  5. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  6. 你没看错:Swift可以直接调用Python函数库

    上周Perfect又推出了新一轮服务器端Swift增强函数库:Perfect-Python。对,你没看错,在服务器端Swift其实可以轻松从其他语种的函数库中直接拿来调用,不需要修改任何内容。以如下python脚本为例:Perfect-Python可以用下列方法封装并调用以上函数,您所需要注意的仅仅是其函数名称以及参数。

  7. Swift中的列表解析

    在Swift中完成这个的最简单的方法是什么?我在寻找类似的东西:从Swift2.x开始,有一些与你的Python样式列表解析相当的东西。(在这个意义上,它更像是Python的xrange。如果你想保持集合懒惰一路通过,只是这样说:与Python中的列表解析语法不同,Swift中的这些操作遵循与其他操作相同的语法。

  8. swift抛出终端的python错误

    每当我尝试启动与python相关的swift时,我都会收到错误.我该如何解决?

  9. 在Android上用Java嵌入Python

    解决方法看看this,它适用于J2SE,你可以尝试在Android上运行.

  10. 在android studio中使用python代码构建android应用程序

    我有一些python代码和它的机器人,我正在寻找一种方法来使用android项目中的那些python代码.有没有办法做到这一点!?解决方法有两种主要工具可供使用,它们彼此不同:>QPython>Kivy使用Kivy,大致相同的代码也可以部署到IOS.

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部