前言

前面我们介绍了 pandas 的基础语法操作,下面我们开始介绍 pandas 的数据读写操作。

pandas 的 IO API 是一组顶层的 reader 函数,比如 pandas.read_csv(),会返回一个 pandas 对象。

而相应的 writer 函数是对象方法,如 DataFrame.to_csv()。

下面列出了所有的 reader 和 writer 函数

注意:后面会用到 StringIO,请确保导入

# python3
from io import StringIO
# python2
from StringIO import StringIO

CSV 和文本文件

读取文本文件的主要函数是 read_csv()

1 参数解析

read_csv() 接受以下常用参数:

1.1 基础

filepath_or_buffer: 变量

可以是文件路径、文件 URL 或任何带有 read() 函数的对象

sep: str,默认 ,,对于 read_table 是 \t

  • 文件分隔符,如果设置为 None,则 C 引擎无法自动检测分隔符,而 Python 引擎可以通过内置的嗅探器工具自动检测分隔符。
  • 此外,如果设置的字符长度大于 1,且不是 '\s ',那么该字符串会被解析为正则表达式,且强制使用 Python 解析引擎。
  • 例如 '\\r\\t',但是正则表达式容易忽略文本中的引用数据。

delimiter: str, 默认为 None

sep 的替代参数,功能一致

1.2 列、索引、名称

header: int 或 list, 默认为 'infer'

用作列名的行号,默认行为是对列名进行推断:

  • 如果未指定 names 参数其行为类似于 header=0,即从读取的第一行开始推断。
  • 如果设置了 names,则行为与 header=None 相同。
  • 也可以为 header 设置列表,表示多级列名。如 [0,1,3],未指定的行(这里是 2)将会被跳过,如果 skip_blank_lines=True,则会跳过空行和注释的行。因此 header=0 并不是代表文件的第一行

names: array-like, 默认为 None

需要设置的列名列表,如果文件中不包含标题行,则应显式传递 header=None,且此列表中不允许有重复值。

index_col: int, str, sequence of int/str, False, 默认为 None

  • 用作 DataFrame 的索引的列,可以字符串名称或列索引的形式给出。如果指定了列表,则使用 MultiIndex
  • 注意:index_col=False 可用于强制 pandas 不要将第一列用作索引。例如,当您的文件是每行末尾都带有一个分隔符的错误文件时。

usecols: 列表或函数, 默认为 None

  • 只读取指定的列。如果是列表,则所有元素都必须是位置(即文件列中的整数索引)或字符串,这些字符串必须与 names 参数提供的或从文档标题行推断出的列名相对应。
  • 列表中的顺序会被忽略,即 usecols=[0, 1] 等价于 [1, 0]
  • 如果是可调用函数,将会根据列名计算,返回可调用函数计算为 True 的名称
In [1]: import pandas as pd
In [2]: from io import StringIO
In [3]: data = "col1,col2,col3\na,b,1\na,b,2\nc,d,3"
In [4]: pd.read_csv(StringIO(data))
Out[4]: 
  col1 col2  col3
0    a    b     1
1    a    b     2
2    c    d     3
In [5]: pd.read_csv(StringIO(data), usecols=lambda x: x.upper() in ["COL1", "COL3"])
Out[5]: 
  col1  col3
0    a     1
1    a     2
2    c     3

使用此参数可以大大加快解析时间并降低内存使用

squeeze: boolean, 默认为 False

  • 如果解析的数据只包含一列,那么返回一个 Series

prefix: str, 默认为 None

  • 当没有标题时,添加到自动生成的列号的前缀,例如 'X' 表示 X0, X1...

mangle_dupe_cols: boolean, 默认为 True

  • 重复的列将被指定为 'X','X.1'…'X.N',而不是 'X'... 。如果在列中有重复的名称,传递 False 将导致数据被覆盖

1.3 常规解析配置

dtype: 类型名或类型字典(column -> type), 默认为 None

数据或列的数据类型。例如。

{'a':np.float64,'b':np.int32}

engine: {'c', 'python'}

  • 要使用的解析器引擎。C 引擎更快,而 Python 引擎目前功能更完整

converters: dict, 默认为 None

  • 用于在某些列中对值进行转换的函数字典。键可以是整数,也可以是列名

true_values: list, 默认为 None

  • 数据值解析为 True

false_values: list, 默认为 None

  • 数据值解析为 False

skipinitialspace: boolean, 默认为 False

  • 跳过分隔符之后的空格

skiprows: 整数或整数列表, 默认为 None

  • 在文件开头要跳过的行号(索引为 0)或要跳过的行数
  • 如果可调用函数,则对索引应用函数,如果返回 True,则应跳过该行,否则返回 False
In [6]: data = "col1,col2,col3\na,b,1\na,b,2\nc,d,3"
In [7]: pd.read_csv(StringIO(data))
Out[7]: 
  col1 col2  col3
0    a    b     1
1    a    b     2
2    c    d     3
In [8]: pd.read_csv(StringIO(data), skiprows=lambda x: x % 2 != 0)
Out[8]: 
  col1 col2  col3
0    a    b     2

skipfooter: int, 默认为 0

  • 需要跳过文件末尾的行数(不支持 C 引擎)

nrows: int, 默认为 None

  • 要读取的文件行数,对于读取大文件很有用

memory_map: boolean, 默认为 False

  • 如果为 filepath_or_buffer 参数指定了文件路径,则将文件对象直接映射到内存中,然后直接从那里访问数据。使用此选项可以提高性能,因为不再有任何 I/O 开销

1.4 NA 和缺失数据处理

na_values: scalar, str, list-like, dict, 默认为 None

  • 需要转换为 NA 值的字符串

keep_default_na: boolean, 默认为 True

解析数据时是否包含默认的 NaN 值。根据是否传入 na_values,其行为如下

keep_default_na=True, 且指定了 na_values, na_values 将会与默认的 NaN 一起被解析

keep_default_na=True, 且未指定 na_values, 只解析默认的 NaN

keep_default_na=False, 且指定了 na_values, 只解析 na_values 指定的 NaN

keep_default_na=False, 且未指定 na_values, 字符串不会被解析为 NaN

注意:如果 na_filter=False,那么 keep_default_na 和 na_values 参数将被忽略

na_filter: boolean, 默认为 True

  • 检测缺失值标记(空字符串和 na_values 的值)。在没有任何 NA 的数据中,设置 na_filter=False 可以提高读取大文件的性能

skip_blank_lines: boolean, 默认为 True

  • 如果为 True,则跳过空行,而不是解释为 NaN 值

1.5 日期时间处理

parse_dates: 布尔值、列表或嵌套列表、字典, 默认为 False.

  • 如果为 True -> 尝试解析索引
  • 如果为 [1, 2, 3] -> 尝试将 1, 2, 3 列解析为分隔的日期
  • 如果为 [[1, 3]] -> 将 1, 3 列解析为单个日期列
  • 如果为 {'foo': [1, 3]} -> 将 1, 3 列作为日期并设置列名为 foo

infer_datetime_format: 布尔值, 默认为 False

  • 如果设置为 True 且设置了 parse_dates,则尝试推断 datetime 格式以加快处理速度

date_parser: 函数, 默认为 None

用于将字符串序列转换为日期时间实例数组的函数。默认使用 dateutil.parser.parser 进行转换,pandas 将尝试以三种不同的方式调用 date_parser

  • 传递一个或多个数组(parse_dates 定义的列)作为参数;
  • 将 parse_dates 定义的列中的字符串值连接到单个数组中,并将其传递;
  • 使用一个或多个字符串(对应于 parse_dates 定义的列)作为参数,对每一行调用 date_parser 一次。

dayfirst: 布尔值, 默认为 False

  • DD/MM 格式的日期

cache_dates: 布尔值, 默认为 True

  • 如果为 True,则使用唯一的、经过转换的日期缓存来应用 datetime 转换。
  • 在解析重复的日期字符串,特别是带有时区偏移量的日期字符串时,可能会显著提高速度。

1.6 迭代

iterator: boolean, 默认为 False

  • 返回 TextFileReader 对象以进行迭代或使用 get_chunk() 来获取块

1.7 引用、压缩和文件格式

compression: {'infer', 'gzip', 'bz2', 'zip', 'xz', None, dict}, 默认为 'infer'

  • 用于对磁盘数据进行即时解压缩。如果为 "infer",则如果 filepath_or_buffer 是文件路径且以 ".gz",".bz2",".zip" 或 ".xz" 结尾,则分别使用 gzip,bz2,zip 或 xz 解压,否则不进行解压缩。
  • 如果使用 "zip",则 ZIP 文件必须仅包含一个要读取的数据文件。设置为 None 表示不解压
  • 也可以使用字典的方式,键为 method 的值从 {'zip', 'gzip', 'bz2'} 中选择。例如
compression={'method': 'gzip', 'compresslevel': 1, 'mtime': 1}

thousandsstr, 默认为 None

  • 数值在千位的分隔符

decimal: str, 默认为 '.'

  • 小数点

float_precision: string, 默认为 None

  • 指定 C 引擎应该使用哪个转换器来处理浮点值。普通转换器的选项为 None,高精度转换器的选项为 high,双向转换器的选项为 round_trip。

quotechar: str (长度为 1)

  • 用于表示被引用数据的开始和结束的字符。带引号的数据里的分隔符将被忽略

comment: str, 默认为 None

  • 用于跳过该字符开头的行,例如,如果 comment='#',将会跳过 # 开头的行

encoding: str, 默认为 None

设置编码格式

1.8 错误处理

error_bad_linesboolean, 默认为 True

  • 默认情况下,字段太多的行(例如,带有太多逗号的 csv 文件)会引发异常,并且不会返回任何 DataFrame。
  • 如果设置为 False,则这些坏行将会被删除

warn_bad_linesboolean, 默认为 True

如果 error_bad_lines=False 且 warn_bad_lines=True,每个坏行都会输出一个警告

2. 指定数据列的类型

您可以指示整个 DataFrame 或各列的数据类型

In [9]: import numpy as np
In [10]: data = "a,b,c,d\n1,2,3,4\n5,6,7,8\n9,10,11"
In [11]: print(data)
a,b,c,d
1,2,3,4
5,6,7,8
9,10,11
In [12]: df = pd.read_csv(StringIO(data), dtype=object)
In [13]: df
Out[13]: 
   a   b   c    d
0  1   2   3    4
1  5   6   7    8
2  9  10  11  NaN
In [14]: df["a"][0]
Out[14]: '1'
In [15]: df = pd.read_csv(StringIO(data), dtype={"b": object, "c": np.float64, "d": "Int64"})
In [16]: df.dtypes
Out[16]: 
a      int64
b     object
c    float64
d      Int64
dtype: object

你可以使用 read_csv() 的 converters 参数,统一某列的数据类型

In [17]: data = "col_1\n1\n2\n'A'\n4.22"
In [18]: df = pd.read_csv(StringIO(data), converters={"col_1": str})
In [19]: df
Out[19]: 
  col_1
0     1
1     2
2   'A'
3  4.22
In [20]: df["col_1"].apply(type).value_counts()
Out[20]: 
<class 'str'>    4
Name: col_1, dtype: int64

或者,您可以在读取数据后使用 to_numeric() 函数强制转换类型

In [21]: df2 = pd.read_csv(StringIO(data))
In [22]: df2["col_1"] = pd.to_numeric(df2["col_1"], errors="coerce")
In [23]: df2
Out[23]: 
   col_1
0   1.00
1   2.00
2    NaN
3   4.22
In [24]: df2["col_1"].apply(type).value_counts()
Out[24]: 
<class 'float'>    4
Name: col_1, dtype: int64

它将所有有效的数值转换为浮点数,而将无效的解析为 NaN

最后,如何处理包含混合类型的列取决于你的具体需要。在上面的例子中,如果您只想要将异常的数据转换为 NaN,那么 to_numeric() 可能是您的最佳选择。

然而,如果您想要强制转换所有数据,而无论类型如何,那么使用 read_csv() 的 converters 参数会更好

注意

在某些情况下,读取包含混合类型列的异常数据将导致数据集不一致。

如果您依赖 pandas 来推断列的类型,解析引擎将继续推断数据块的类型,而不是一次推断整个数据集。

In [25]: col_1 = list(range(500000))   ["a", "b"]   list(range(500000))
In [26]: df = pd.DataFrame({"col_1": col_1})
In [27]: df.to_csv("foo.csv")
In [28]: mixed_df = pd.read_csv("foo.csv")
In [29]: mixed_df["col_1"].apply(type).value_counts()
Out[29]: 
<class 'int'>    737858
<class 'str'>    262144
Name: col_1, dtype: int64
In [30]: mixed_df["col_1"].dtype
Out[30]: dtype('O')

这就导致 mixed_df 对于列的某些块包含 int 类型,而对于其他块则包含 str,这是由于读取的数据是混合类型。

以上就是Python pandas数据读写操作IO工具CSV的详细内容,更多关于Python pandas数据读写的资料请关注Devmax其它相关文章!

Python数据处理pandas读写操作IO工具CSV解析的更多相关文章

  1. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  2. ios – 如何从Core Data创建CSV文件(swift)

    我正在构建一个带有核心数据的应用程序,它们显示在tableView中.现在我想将这些数据导出到CSV文件,这样我就可以在windows上的excel中打开它.我搜索了很多,但没有找到正确的答案.有人可以帮助我或给我一个良好的解释或教程的链接?

  3. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  4. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  5. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  6. 使用 Swift语言进行 Hadoop 数据流应用程序开发

    如果您发现了问题,或者希望为改进本文提供意见和建议,请在这里指出.在您开始之前,请参阅目前待解决的问题清单.简介本项目包括两类Hadoop流处理应用程序:映射器mapper和总结器reducer。如上所示,在Hadoop上编写流处理程序是一个很简单的工作,也不需要依赖于特定的软件体系。

  7. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  8. 你没看错:Swift可以直接调用Python函数库

    上周Perfect又推出了新一轮服务器端Swift增强函数库:Perfect-Python。对,你没看错,在服务器端Swift其实可以轻松从其他语种的函数库中直接拿来调用,不需要修改任何内容。以如下python脚本为例:Perfect-Python可以用下列方法封装并调用以上函数,您所需要注意的仅仅是其函数名称以及参数。

  9. Swift中的列表解析

    在Swift中完成这个的最简单的方法是什么?我在寻找类似的东西:从Swift2.x开始,有一些与你的Python样式列表解析相当的东西。(在这个意义上,它更像是Python的xrange。如果你想保持集合懒惰一路通过,只是这样说:与Python中的列表解析语法不同,Swift中的这些操作遵循与其他操作相同的语法。

  10. swift 3.1如何从CSV获取数组或字典

    我怎样才能在这种CSV文件中使用数据?或者我如何打印“内部”列的第2行值并将其分配给属性/实体?我有这种从excel文件转换为Numbers的文件,我想抓取每列的数据并使用它们.原始CSV文件以数字打开:我得到的控制台输出:使用这种方法:解决方案感谢JensMeder运用在viewDidLoad中你想要做的是将字符串分成行然后分成列.Swift已经为String结构提供了components方法.然后您可以通过以下方式访问任何值

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部