前言

时间序列分析是基于随机过程理论和数理统计学方法:

  • 每日的平均气温
  • 每天的销售额
  • 每月的降水量

时间序列分析主要通过statsmodel库的tsa模块完成:

  • 根据时间序列的散点图,自相关函数和偏自相关函数图识别序列是否平稳的非随机序列,如果是非随机序列,观察其平稳性
  • 对非平稳的时间序列数据采用差分进行平滑处理
  • 根据识别出来的特征建立相应的时间序列模型
  • 参数估计,检验是否具有统计意义
  • 假设检验,判断模型的残差序列是否为白噪声序列
  • 利用已通过检验的模型进行预测

时间序列的相关检验

白噪声检验

如果为白噪声数据(即独立分布的随机数据),说明其没有任何有用的信息

## 输出高清图像
%config InlineBackend.figure_format = 'retina'
%matplotlib inline
## 图像显示中文的问题
import matplotlib
matplotlib.rcParams['axes.unicode_minus']=False

import seaborn as sns
sns.set(font= "Kaiti",style="ticks",font_scale=1.4)
## 导入会使用到的相关库
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from statsmodels.tsa.stattools import *
import statsmodels.api as sm
import statsmodels.formula.api as smf
from statsmodels.tsa.api import SimpleExpSmoothing,Holt,ExponentialSmoothing,AR,ARIMA,ARMA
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf

import pmdarima as pm
from sklearn.metrics import mean_absolute_error

import pyflux as pf
from fbprophet import Prophet
## 忽略提醒
import warnings
warnings.filterwarnings("ignore")
## 读取时间序列数据,该数据包含:X1为飞机乘客数据,X2为一组随机数据
df = pd.read_csv("data/chap6/timeserise.csv")
## 查看数据的变化趋势
df.plot(kind = "line",figsize = (10,6))
plt.grid()
plt.title("时序数据")
plt.show()

## 白噪声检验Ljung-Box检验
## 该检验用来检查序列是否为随机序列,如果是随机序列,那它们的值之间没有任何关系
## 使用LB检验来检验序列是否为白噪声,原假设为在延迟期数内序列之间相互独立。
lags = [4,8,16,32]
LB = sm.stats.diagnostic.acorr_ljungbox(df["X1"],lags = lags,return_df = True)
print("序列X1的检验结果:\n",LB)
LB = sm.stats.diagnostic.acorr_ljungbox(df["X2"],lags = lags,return_df = True)
print("序列X2的检验结果:\n",LB)

## 如果P值小于0.05,说明序列之间不独立,不是白噪声

'''
序列X1的检验结果:
         lb_stat      lb_pvalue
4    427.738684   2.817731e-91
8    709.484498  6.496271e-148
16  1289.037076  1.137910e-264
32  1792.523003   0.000000e 00
序列X2的检验结果:
       lb_stat  lb_pvalue
4    1.822771   0.768314
8    8.452830   0.390531
16  15.508599   0.487750
32  28.717743   0.633459
'''

在延迟阶数为[4,6,16,32]的情况下,序列X1的LB检验P值均小于0.05,即该数据不是随机的。有规律可循,有分析价值,而序列X2的LB检验P值均大于0.05,该数据为白噪声,没有分析价值

平稳性检验

时间序列是否平稳,对选择预测的数学模型非常关键

如果数据是平稳的,可以使用自回归平均移动模型(ARMA)

如果数据是不平稳的,可以使用差分移动自回归平均移动模型(ARIMA)

## 序列的单位根检验,即检验序列的平稳性
dftest = adfuller(df["X2"],autolag='BIC')
dfoutput = pd.Series(dftest[0:4], index=['adf','p-value','usedlag','Number of Observations Used'])
print("X2单位根检验结果:\n",dfoutput)

dftest = adfuller(df["X1"],autolag='BIC')
dfoutput = pd.Series(dftest[0:4], index=['adf','p-value','usedlag','Number of Observations Used'])
print("X1单位根检验结果:\n",dfoutput)

## 对X1进行一阶差分后的序列进行检验
X1diff = df["X1"].diff().dropna()
dftest = adfuller(X1diff,autolag='BIC')
dfoutput = pd.Series(dftest[0:4], index=['adf','p-value','usedlag','Number of Observations Used'])
print("X1一阶差分单位根检验结果:\n",dfoutput)

## 一阶差分后 P值大于0.05, 小于0.1,可以认为其是平稳的
'''
X2单位根检验结果:
 adf                           -1.124298e 01
p-value                        1.788000e-20
usedlag                        0.000000e 00
Number of Observations Used    1.430000e 02
dtype: float64
X1单位根检验结果:
 adf                              0.815369
p-value                          0.991880
usedlag                         13.000000
Number of Observations Used    130.000000
dtype: float64
X1一阶差分单位根检验结果:
 adf                             -2.829267
p-value                          0.054213
usedlag                         12.000000
Number of Observations Used    130.000000
dtype: float64
'''

序列X2的检验P值小于0.05,说明X2是一个平稳时间序列(该序列是白噪声,白噪声序列是平稳序列)

序列X1的检验P值远大于0.05,说明不平稳,而其一阶差分后的结果,P值大于0.05,但小于0.1,可以认为平稳

针对数据的平稳性检验,还可以使用KPSS检验,其原假设该序列是平稳的,该检验可以用kpss()函数完成

## KPSS检验的原假设为:序列x是平稳的。

## 对序列X2使用KPSS检验平稳性
dfkpss = kpss(df["X2"])
dfoutput = pd.Series(dfkpss[0:3], index=["kpss_stat"," p-value"," usedlag"])
print("X2 KPSS检验结果:\n",dfoutput)
## 接受序列平稳的原假设
## 对序列X1使用KPSS检验平稳性
dfkpss = kpss(df["X1"])
dfoutput = pd.Series(dfkpss[0:3], index=["kpss_stat"," p-value"," usedlag"])
print("X1 KPSS检验结果:\n",dfoutput)
## 拒绝序列平稳的原假设

## 对序列X1使用KPSS检验平稳性
dfkpss = kpss(X1diff)
dfoutput = pd.Series(dfkpss[0:3], index=["kpss_stat"," p-value"," usedlag"])
print("X1一阶差分KPSS检验结果:\n",dfoutput)
## 接受序列平稳的原假设

'''
X2 KPSS检验结果:
 kpss_stat     0.087559
 p-value      0.100000
 usedlag     14.000000
dtype: float64
X1 KPSS检验结果:
 kpss_stat     1.052175
 p-value      0.010000
 usedlag     14.000000
dtype: float64
X1一阶差分KPSS检验结果:
 kpss_stat     0.05301
 p-value      0.10000
 usedlag     14.00000
dtype: float64
'''

ARIMA(p,d,q)模型

## 检验ARIMA模型的参数d
X1d = pm.arima.ndiffs(df["X1"], alpha=0.05, test="kpss", max_d=3)
print("使用KPSS方法对序列X1的参数d取值进行预测,d = ",X1d)

X1diffd = pm.arima.ndiffs(X1diff, alpha=0.05, test="kpss", max_d=3)
print("使用KPSS方法对序列X1一阶差分后的参数d取值进行预测,d = ",X1diffd)

X2d = pm.arima.ndiffs(df["X2"], alpha=0.05, test="kpss", max_d=3)
print("使用KPSS方法对序列X2的参数d取值进行预测,d = ",X2d)

'''
使用KPSS方法对序列X1的参数d取值进行预测,d =  1
使用KPSS方法对序列X1一阶差分后的参数d取值进行预测,d =  0
使用KPSS方法对序列X1的参数d取值进行预测,d =  0
'''

针对SARIMA模型,还有一个季节性平稳性参数D

## 检验SARIMA模型的参数季节阶数D
X1d = pm.arima.nsdiffs(df["X1"], 12, max_D=2)
print("对序列X1的季节阶数D取值进行预测,D = ",X1d)
X1diffd = pm.arima.nsdiffs(X1diff, 12, max_D=2)
print("序列X1一阶差分后的季节阶数D取值进行预测,D = ",X1diffd)

'''
对序列X1的季节阶数D取值进行预测,D =  1
序列X1一阶差分后的季节阶数D取值进行预测,D =  1
'''

自相关和偏相关分析

## 对随机序列X2进行自相关和偏相关分析可视化
fig = plt.figure(figsize=(16,5))
plt.subplot(1,3,1)
plt.plot(df["X2"],"r-")
plt.grid()
plt.title("X2序列波动")
ax = fig.add_subplot(1,3,2)
plot_acf(df["X2"], lags=60,ax = ax)
plt.grid()
ax = fig.add_subplot(1,3,3)
plot_pacf(df["X2"], lags=60,ax = ax)
plt.grid()
plt.tight_layout()
plt.show()

在图像中滞后0表示自己和自己的相关性,恒等于1。不用于确定p和q。

## 对非随机序列X1进行自相关和偏相关分析可视化
fig = plt.figure(figsize=(16,5))
plt.subplot(1,3,1)
plt.plot(df["X1"],"r-")
plt.grid()
plt.title("X1序列波动")
ax = fig.add_subplot(1,3,2)
plot_acf(df["X1"], lags=60,ax = ax)
plt.grid()
ax = fig.add_subplot(1,3,3)
plot_pacf(df["X1"], lags=60,ax = ax)
plt.ylim([-1,1])
plt.grid()
plt.tight_layout()
plt.show()

## 对非随机序列X1一阶差分后的序列进行自相关和偏相关分析可视化
fig = plt.figure(figsize=(16,5))
plt.subplot(1,3,1)
plt.plot(X1diff,"r-")
plt.grid()
plt.title("X1序列一阶差分后波动")
ax = fig.add_subplot(1,3,2)
plot_acf(X1diff, lags=60,ax = ax)
plt.grid()
ax = fig.add_subplot(1,3,3)
plot_pacf(X1diff, lags=60,ax = ax)
plt.grid()
plt.tight_layout()
plt.show()

ARMA(p,q)中,自相关系数的滞后,对应着参数q;偏相关系数的滞后对应着参数p。

## 时间序列的分解
## 通过观察序列X1,可以发现其既有上升的趋势,也有周期性的趋势,所以可以将该序列进行分解
## 使用乘法模型分解结果(通常适用于有增长趋势的序列)
X1decomp = pm.arima.decompose(df["X1"].values,"multiplicative", m=12)
## 可视化出分解的结果
ax = pm.utils.decomposed_plot(X1decomp,figure_kwargs = {"figsize": (10, 6)},
                              show=False)
ax[0].set_title("乘法模型分解结果")
plt.show()

## 使用加法模型分解结果(通常适用于平稳趋势的序列)
X1decomp = pm.arima.decompose(X1diff.values,"additive", m=12)
## 可视化出分解的结果
ax = pm.utils.decomposed_plot(X1decomp,figure_kwargs = {"figsize": (10, 6)},
                              show=False)
ax[0].set_title("加法模型分解结果")
plt.show()

移动平均算法

## 数据准备
## 对序列X1进行切分,后面的24个数据用于测试集
train = pd.DataFrame(df["X1"][0:120])
test = pd.DataFrame(df["X1"][120:])
## 可视化切分后的数据
train["X1"].plot(figsize=(14,7), title= "乘客数量数据",label = "X1 train")
test["X1"].plot(label = "X1 test")
plt.legend()
plt.grid()
plt.show()

print(train.shape)
print(test.shape)
df["X1"].shape
'''
(120, 1)
(24, 1)
(144,)
'''

简单移动平均法

## 简单移动平均进行预测
y_hat_avg = test.copy(deep = False)
y_hat_avg["moving_avg_forecast"] =  train["X1"].rolling(24).mean().iloc[-1]
## 可视化出预测结果
plt.figure(figsize=(14,7))
train["X1"].plot(figsize=(14,7),label = "X1 train")
test["X1"].plot(label = "X1 test")
y_hat_avg["moving_avg_forecast"].plot(style="g--o", lw=2,
                                      label="移动平均预测")
plt.legend()
plt.grid()
plt.title("简单移动平均预测")
plt.show()

## 计算预测结果和真实值的误差
print("预测绝对值误差:",mean_absolute_error(test["X1"],y_hat_avg["moving_avg_forecast"]))
'''
预测绝对值误差: 82.55208333333336
'''

简单指数平滑法

## 数据准备
y_hat_avg = test.copy(deep = False)
## 模型构建
model1 = SimpleExpSmoothing(train["X1"].values).fit(smoothing_level=0.15)
y_hat_avg["exp_smooth_forecast1"] = model1.forecast(len(test))

model2 = SimpleExpSmoothing(train["X1"].values).fit(smoothing_level=0.5)
y_hat_avg["exp_smooth_forecast2"] = model2.forecast(len(test))

## 可视化出预测结果
plt.figure(figsize=(14,7))
train["X1"].plot(figsize=(14,7),label = "X1 train")
test["X1"].plot(label = "X1 test")
y_hat_avg["exp_smooth_forecast1"].plot(style="g--o", lw=2,
                                      label="smoothing_level=0.15")
y_hat_avg["exp_smooth_forecast2"].plot(style="g--s", lw=2,
                                      label="smoothing_level=0.5")
plt.legend()
plt.grid()
plt.title("简单指数平滑预测")
plt.show()

## 计算预测结果和真实值的误差
print("smoothing_level=0.15,预测绝对值误差:",
      mean_absolute_error(test["X1"],y_hat_avg["exp_smooth_forecast1"]))
print("smoothing_level=0.5,预测绝对值误差:",
      mean_absolute_error(test["X1"],y_hat_avg["exp_smooth_forecast2"]))

smoothing_level=0.15,预测绝对值误差: 81.10115706423566

smoothing_level=0.5,预测绝对值误差: 106.813228720506

霍尔特(Holt)线性趋势法

## 数据准备
y_hat_avg = test.copy(deep = False)
## 模型构建
model1 = Holt(train["X1"].values).fit(smoothing_level=0.1,                                 smoothing_slope = 0.05)
y_hat_avg["holt_forecast1"] = model1.forecast(len(test))
model2 = Holt(train["X1"].values).fit(smoothing_level=0.1,                                 smoothing_slope = 0.25)
y_hat_avg["holt_forecast2"] = model2.forecast(len(test))
## 可视化出预测结果
plt.figure(figsize=(14,7))
train["X1"].plot(figsize=(14,7),label = "X1 train")
test["X1"].plot(label = "X1 test")
y_hat_avg["holt_forecast1"].plot(style="g--o", lw=2,
                                 label="Holt线性趋势法(1)")
y_hat_avg["holt_forecast2"].plot(style="g--s", lw=2,
                                 label="Holt线性趋势法(2)")
plt.legend()
plt.grid()
plt.title("Holt线性趋势法预测")
plt.show()

## 计算预测结果和真实值的误差
print("smoothing_slope = 0.05,预测绝对值误差:",
      mean_absolute_error(test["X1"],y_hat_avg["holt_forecast1"]))
print("smoothing_slope = 0.25,预测绝对值误差:",
      mean_absolute_error(test["X1"],y_hat_avg["holt_forecast2"]))

smoothing_slope = 0.05,预测绝对值误差: 54.727467142360275

smoothing_slope = 0.25,预测绝对值误差: 69.79052992788556

Holt-Winters季节性预测模型

## 数据准备
y_hat_avg = test.copy(deep = False)
## 模型构建
model1 = ExponentialSmoothing(train["X1"].values,
                              seasonal_periods=12, # 周期性为12  
                              trend="add", seasonal="add").fit()
y_hat_avg["holt_winter_forecast1"] = model1.forecast(len(test))
## 可视化出预测结果
plt.figure(figsize=(14,7))
train["X1"].plot(figsize=(14,7),label = "X1 train")
test["X1"].plot(label = "X1 test")
y_hat_avg["holt_winter_forecast1"].plot(style="g--o", lw=2,
                                 label="Holt-Winters")
plt.legend()
plt.grid()
plt.title("Holt-Winters季节性预测模型")
plt.show()
## 计算预测结果和真实值的误差
print("Holt-Winters季节性预测模型,预测绝对值误差:",
      mean_absolute_error(test["X1"],y_hat_avg["holt_winter_forecast1"]))

Holt-Winters季节性预测模型,预测绝对值误差: 30.06821059070873

ARIMA模型

  • 注意针对乘客数据X1,使用AR模型或者ARMA模型进行预测,并不是非常的合适,
  • 这里是使用AR和ARMA模型进行预测的目的主要是为了和更好的模型预测结果进行对比
## 使用AR模型对乘客数据进行预测 

## 经过前面序列的偏相关系数的可视化结果,使用AR(2)模型可对序列进行建模
## 数据准备
y_hat = test.copy(deep = False)
## 模型构建
ar_model = ARMA(train["X1"].values,order = (2,0)).fit()
## 输出拟合模型的结果
print(ar_model.summary())

## AIC=1141.989;BIC= 1153.138;两个系数是显著的

## 查看模型的拟合残差分布
fig = plt.figure(figsize=(12,5))
ax = fig.add_subplot(1,2,1)
plt.plot(ar_model.resid)
plt.title("AR(2)残差曲线")
## 检查残差是否符合正太分布
ax = fig.add_subplot(1,2,2)
sm.qqplot(ar_model.resid, line='q', ax=ax)
plt.title("AR(2)残差Q-Q图")
plt.tight_layout()
plt.show()

## 预测未来24个数据,并输出95%置信区间
pre, se, conf = ar_model.forecast(24, alpha=0.05)  
## 整理数据
y_hat["ar2_pre"] = pre
y_hat["ar2_pre_lower"] = conf[:,0]
y_hat["ar2_pre_upper"] = conf[:,1]
## 可视化出预测结果
plt.figure(figsize=(14,7))
train["X1"].plot(figsize=(14,7),label = "X1 train")
test["X1"].plot(label = "X1 test")
y_hat["ar2_pre"].plot(style="g--o", lw=2,label="AR(2)")
## 可视化出置信区间
plt.fill_between(y_hat.index, y_hat["ar2_pre_lower"], 
                 y_hat["ar2_pre_upper"],color='k',alpha=.15,
                 label = "95%置信区间")
plt.legend()
plt.grid()
plt.title("AR(2)模型")
plt.show()
# 计算预测结果和真实值的误差
print("AR(2)模型预测的绝对值误差:",
      mean_absolute_error(test["X1"],y_hat["ar2_pre"]))

AR(2)模型预测的绝对值误差: 165.79608244918572

可以发现使用AR(2)的预测效果并不好

ARMA模型

## 尝试使用ARMA模型进行预测

## 根据前面的自相关系数和偏相关系数,为了降低模型的复杂读,可以使用ARMA(2,1)

## 数据准备
y_hat = test.copy(deep = False)
## 模型构建
arma_model = ARMA(train["X1"].values,order = (2,1)).fit()
## 输出拟合模型的结果
print(arma_model.summary())

## AIC=1141.989;BIC= 1153.138;两个系数是显著的

## 查看模型的拟合残差分布
fig = plt.figure(figsize=(12,5))
ax = fig.add_subplot(1,2,1)
plt.plot(arma_model.resid)
plt.title("ARMA(2,1)残差曲线")
## 检查残差是否符合正太分布
ax = fig.add_subplot(1,2,2)
sm.qqplot(arma_model.resid, line='q', ax=ax)
plt.title("ARMA(2,1)残差Q-Q图")
plt.tight_layout()
plt.show()

## 预测未来24个数据,并输出95%置信区间
pre, se, conf = arma_model.forecast(24, alpha=0.05)
## 整理数据
y_hat["arma_pre"] = pre
y_hat["arma_pre_lower"] = conf[:,0]
y_hat["arma_pre_upper"] = conf[:,1]
## 可视化出预测结果
plt.figure(figsize=(14,7))
train["X1"].plot(figsize=(14,7),label = "X1 train")
test["X1"].plot(label = "X1 test")
y_hat["arma_pre"].plot(style="g--o", lw=2,label="ARMA(2,1)")
## 可视化出置信区间
plt.fill_between(y_hat.index, y_hat["arma_pre_lower"], 
                 y_hat["arma_pre_upper"],color='k',alpha=.15,
                 label = "95%置信区间")
plt.legend()
plt.grid()
plt.title("ARMA(2,1)模型")
plt.show()
# 计算预测结果和真实值的误差
print("ARMA模型预测的绝对值误差:",
      mean_absolute_error(test["X1"],y_hat["arma_pre"]))

ARMA模型预测的绝对值误差: 147.26531763335154

针对ARMA模型自动选择合适的参数

## 自动搜索合适的参数
model = pm.auto_arima(train["X1"].values,
                      start_p=1, start_q=1, # p,q的开始值
                      max_p=12, max_q=12, # 最大的p和q
                      d = 0,            # 寻找ARMA模型参数
                      m=1,              # 序列的周期
                      seasonal=False,   # 没有季节性趋势
                      trace=True,error_action='ignore',  
                      suppress_warnings=True, stepwise=True)

print(model.summary())
## 使用ARMA(3,2)对测试集进行预测
pre, conf = model.predict(n_periods=24, alpha=0.05,
                          return_conf_int=True)
## 可视化ARMA(3,2)的预测结果,整理数据
y_hat["arma_pre"] = pre
y_hat["arma_pre_lower"] = conf[:,0]
y_hat["arma_pre_upper"] = conf[:,1]
## 可视化出预测结果
plt.figure(figsize=(14,7))
train["X1"].plot(figsize=(14,7),label = "X1 train")
test["X1"].plot(label = "X1 test")
y_hat["arma_pre"].plot(style="g--o", lw=2,label="ARMA(3,2)")
## 可视化出置信区间
plt.fill_between(y_hat.index, y_hat["arma_pre_lower"], 
                 y_hat["arma_pre_upper"],color='k',alpha=.15,
                 label = "95%置信区间")
plt.legend()
plt.grid()
plt.title("ARMA(3,2)模型")
plt.show()

# 计算预测结果和真实值的误差
print("ARMA模型预测的绝对值误差:",
      mean_absolute_error(test["X1"],y_hat["arma_pre"]))

ARMA模型预测的绝对值误差: 158.11464180972925

可以发现使用自动ARMA(3,2)模型的效果并没有ARMA(2,1)的预测效果好

时序数据的异常值检测

可以将突然增大或突然减小的数据无规律看作异常值

## 使用prophet检测时间序列是否有异常值

## 从1991年2月到2005年5月,每周提供美国成品汽车汽油产品的时间序列(每天数千桶)

## 数据准备
data = pm.datasets.load_gasoline()
datadf = pd.DataFrame({"y":data})
datadf["ds"] = pd.date_range(start="1991-2",periods=len(data),freq="W")
## 可视化时间序列的变化情况
datadf.plot(x = "ds",y = "y",style = "b-o",figsize=(14,7))
plt.grid()
plt.title("时间序列数据的波动情况")
plt.show()

## 对该数据建立一个时间序列模型
np.random.seed(1234)  ## 设置随机数种子
model = Prophet(growth="linear",daily_seasonality = False,
                weekly_seasonality=False,
                seasonality_mode = 'multiplicative',
                interval_width = 0.95,   ## 获取95%的置信区间
                )
model = model.fit(datadf)     # 使用数据拟合模型
forecast = model.predict(datadf)  # 使用模型对数据进行预测
forecast["y"] = datadf["y"].reset_index(drop = True)
forecast[["ds","y","yhat","yhat_lower","yhat_upper"]].head()
  ds y yhat yhat_lower yhat_upper
0 1991-02-03 6621.0 6767.051491 6294.125979 7303.352309
1 1991-02-10 6433.0 6794.736479 6299.430616 7305.414252
2 1991-02-17 6582.0 6855.096282 6352.579489 7379.717614
3 1991-02-24 7224.0 6936.976642 6415.157617 7445.523000
4 1991-03-03 6875.0 6990.511503 6489.781400 7488.240435
## 根据模型预测值的置信区间"yhat_lower"和"yhat_upper"判断样本是否为异常值
def outlier_detection(forecast):
    index = np.where((forecast["y"] <= forecast["yhat_lower"])|
                     (forecast["y"] >= forecast["yhat_upper"]),True,False)
    return index
outlier_index = outlier_detection(forecast)
outlier_df = datadf[outlier_index]
print("异常值的数量为:",np.sum(outlier_index))
'''
异常值的数量为: 38
'''
## 可视化异常值的结果
fig, ax = plt.subplots()
## 可视化预测值
forecast.plot(x = "ds",y = "yhat",style = "b-",figsize=(14,7),
              label = "预测值",ax=ax)
## 可视化出置信区间
ax.fill_between(forecast["ds"].values, forecast["yhat_lower"], 
                forecast["yhat_upper"],color='b',alpha=.2,
                label = "95%置信区间")
forecast.plot(kind = "scatter",x = "ds",y = "y",c = "k",
              s = 20,label = "原始数据",ax = ax)
## 可视化出异常值的点
outlier_df.plot(x = "ds",y = "y",style = "rs",ax = ax,
                label = "异常值")
plt.legend(loc = 2)
plt.grid()
plt.title("时间序列异常值检测结果")
plt.show()

异常值大部分都在置信区间外

到此这篇关于python数据分析之时间序列分析详情的文章就介绍到这了,更多相关python时间序列分析内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

python数据分析之时间序列分析详情的更多相关文章

  1. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  2. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  3. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  4. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  5. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  6. 你没看错:Swift可以直接调用Python函数库

    上周Perfect又推出了新一轮服务器端Swift增强函数库:Perfect-Python。对,你没看错,在服务器端Swift其实可以轻松从其他语种的函数库中直接拿来调用,不需要修改任何内容。以如下python脚本为例:Perfect-Python可以用下列方法封装并调用以上函数,您所需要注意的仅仅是其函数名称以及参数。

  7. Swift中的列表解析

    在Swift中完成这个的最简单的方法是什么?我在寻找类似的东西:从Swift2.x开始,有一些与你的Python样式列表解析相当的东西。(在这个意义上,它更像是Python的xrange。如果你想保持集合懒惰一路通过,只是这样说:与Python中的列表解析语法不同,Swift中的这些操作遵循与其他操作相同的语法。

  8. swift抛出终端的python错误

    每当我尝试启动与python相关的swift时,我都会收到错误.我该如何解决?

  9. 在Android上用Java嵌入Python

    解决方法看看this,它适用于J2SE,你可以尝试在Android上运行.

  10. 在android studio中使用python代码构建android应用程序

    我有一些python代码和它的机器人,我正在寻找一种方法来使用android项目中的那些python代码.有没有办法做到这一点!?解决方法有两种主要工具可供使用,它们彼此不同:>QPython>Kivy使用Kivy,大致相同的代码也可以部署到IOS.

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部