我有相当嘈杂的数据,我正试图找出信号的高低信封.它有点像MATLAB中的这个例子:

http://uk.mathworks.com/help/signal/examples/signal-smoothing.html

在“提取峰值信封”中. Python中是否有类似的功能可以做到这一点?我的整个项目都是用Python编写的,最糟糕的情况我可以提取我的numpy数组并将其抛入MATLAB并使用该示例.但是我更喜欢matplotlib的外观……而且真正的cba在MATLAB和Python之间完成所有这些I / O ……

谢谢,

解决方法

Is there a similar function in Python that can do that?

据我所知,Numpy / Scipy / Python中没有这样的功能.但是,创建一个并不困难.总体思路如下:

给定值的向量:

>找到(s)峰的位置.我们叫他们(你)
>找到s的低谷的位置.我们称之为(l).
>使模型适合(u)值对.我们称之为(u_p)
>使模型适合(l)值对.我们称之为(l_p)
>在(s)的域上评估(u_p)以获得上包络的内插值. (我们称之为(q_u))
>评估(s)域上的(l_p)以获得下包络的内插值. (我们称之为(q_l)).

如您所见,它是三个步骤(查找位置,拟合模型,评估模型)的序列,但应用了两次,一次用于信封的上半部分,一次用于下部.

要收集(s)的“峰值”,您需要找到(s)的斜率从正变为负的点,并收集(​​s)的“波谷”,您需要找到斜率为(s)的点. )从负面变为正面.

峰值示例:s = [4,5,4] 5-4为正4-5为负

一个低谷的例子:s = [5,4,5] 4-5是负5-4是正的

这是一个示例脚本,可以帮助您开始使用大量内联注释:

from numpy import array,sign,zeros
from scipy.interpolate import interp1d
from matplotlib.pyplot import plot,show,hold,grid

s = array([1,3,2,6,7,8,8]) #This is your noisy vector of values.

q_u = zeros(s.shape)
q_l = zeros(s.shape)

#Prepend the first value of (s) to the interpolating values. This forces the model to use the same starting point for both the upper and lower envelope models.

u_x = [0,]
u_y = [s[0],]

l_x = [0,]
l_y = [s[0],]

#Detect peaks and troughs and mark their location in u_x,u_y,l_x,l_y respectively.

for k in xrange(1,len(s)-1):
    if (sign(s[k]-s[k-1])==1) and (sign(s[k]-s[k+1])==1):
        u_x.append(k)
        u_y.append(s[k])

    if (sign(s[k]-s[k-1])==-1) and ((sign(s[k]-s[k+1]))==-1):
        l_x.append(k)
        l_y.append(s[k])

#Append the last value of (s) to the interpolating values. This forces the model to use the same ending point for both the upper and lower envelope models.

u_x.append(len(s)-1)
u_y.append(s[-1])

l_x.append(len(s)-1)
l_y.append(s[-1])

#Fit suitable models to the data. Here I am using cubic splines,similarly to the MATLAB example given in the question.

u_p = interp1d(u_x,kind = 'cubic',bounds_error = False,fill_value=0.0)
l_p = interp1d(l_x,l_y,fill_value=0.0)

#Evaluate each model over the domain of (s)
for k in xrange(0,len(s)):
    q_u[k] = u_p(k)
    q_l[k] = l_p(k)

#Plot everything
plot(s);hold(True);plot(q_u,'r');plot(q_l,'g');grid(True);show()

这会产生以下输出:

要进一步改进的要点:

>上述代码不过滤可能比某个阈值“距离”(T1)(例如时间)更近的峰值或波谷.这类似于包络的第二个参数.通过检查u_x,u_y的连续值之间的差异,可以很容易地添加它.
>然而,在前面提到的这一点上的快速改进是在插入上下包络函数之前使用移动平均滤波器对数据进行低通滤波.您可以通过将您的(s)与合适的移动平均滤波器进行卷积来轻松完成此操作.如果没有详细说明(如果需要可以做的话),要产生一个在N个连续样本上运行的移动平均滤波器,你可以这样做:s_filtered = numpy.convolve(s,numpy.ones((1,N) ))/ float(N).(N)越高,您的数据就越平滑.请注意,这会将您的(s)值(N / 2)样本向右移动(在s_filtered中),因为被称为平滑滤波器的group delay.有关移动平均线的更多信息,请参见this link.

希望这可以帮助.

(如果提供了有关原始申请的更多信息,请尽快提出答复.也许数据可以更合适的方式进行预处理(?))

python – 如何获得信号的高低信封?的更多相关文章

  1. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  2. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  3. iWatch报错: Fail to code sign "***" No valid signing identities (i.e. certificate and private key pair

    此错误是证书和开发者账号不匹配.一般出现在我们运行其他人的项目时.所以要检查所以需要开发者账号生产的证书,用自己的账号重新生成一下.比如:如果别人的项目中使用了Healthkit.你直接运行的时候就会报这个错误,因为要Healthkit需要开发者账号生产对应的证书.所以我们运行的时候要使用自己的开发者账号重新生成认证证书.详细可参考这篇博客:http://blog.csdn.net/soindy/

  4. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  5. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  6. swift 移动支付之【支付宝支付】详细步骤

    二.准备工作支付宝开放平台1.向支付宝签约这一步因为涉及到营业执照之类,一般有公司完成,在此不赘述了。支付宝目前只支持采用RSA加密方式做签名验证。具体到支付宝使用RSA做签名验证,就是在生产订单时,需要使用私钥生成签名值;在处理返回的支付结果时,需要使用公钥验证返回结果是否被篡改了。

  7. swift 移动支付之【微信支付】开发步骤

    //向微信注册WXApi.registerapp2.发送预支付数据预支付数据由后台返回,格式如下[plain]viewplaincopyprint?{"appid":"wxxxxxxxxxxx","noncestr":"Hk8dsZoMOdTXGjkJ","package":"Sign=WXPay","partnerid":"01001010110","prepayid":"wx2016050000000000000000000000","sign":"B4879FFFA8B65522A04034E2D0

  8. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  9. 你没看错:Swift可以直接调用Python函数库

    上周Perfect又推出了新一轮服务器端Swift增强函数库:Perfect-Python。对,你没看错,在服务器端Swift其实可以轻松从其他语种的函数库中直接拿来调用,不需要修改任何内容。以如下python脚本为例:Perfect-Python可以用下列方法封装并调用以上函数,您所需要注意的仅仅是其函数名称以及参数。

  10. Swift中的列表解析

    在Swift中完成这个的最简单的方法是什么?我在寻找类似的东西:从Swift2.x开始,有一些与你的Python样式列表解析相当的东西。(在这个意义上,它更像是Python的xrange。如果你想保持集合懒惰一路通过,只是这样说:与Python中的列表解析语法不同,Swift中的这些操作遵循与其他操作相同的语法。

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部