面对缺失值三种处理方法:

  • option 1: 去掉含有缺失值的样本(行)
  • option 2:将含有缺失值的列(特征向量)去掉
  • option 3:将缺失值用某些值填充(0,平均值,中值等)

对于dropna和fillna,dataframe和series都有,在这主要讲datafame的

对于option1:

使用DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)

参数说明:

  • axis:
    • axis=0: 删除包含缺失值的行
    • axis=1: 删除包含缺失值的列
  • how: 与axis配合使用
    • how=‘any’ :只要有缺失值出现,就删除该行货列
    • how=‘all’: 所有的值都缺失,才删除行或列
  • thresh: axis中至少有thresh个非缺失值,否则删除
  • 比如 axis=0,thresh=10:标识如果该行中非缺失值的数量小于10,将删除改行
  • subset: list
  • 在哪些列中查看是否有缺失值
  • inplace: 是否在原数据上操作。如果为真,返回None否则返回新的copy,去掉了缺失值

建议在使用时将全部的缺省参数都写上,便于快速理解

examples:

 	   	      df = pd.DataFrame(
                                        {"name": ['Alfred', 'Batman', 'Catwoman'],         
                                          "toy": [np.nan, 'Batmobile', 'Bullwhip'],
                                         "born": [pd.NaT, pd.Timestamp("1940-04-25")     
                                                        pd.NaT]})
 			>>> df
 			       name        toy       born
 			0    Alfred        NaN        NaT
 			1    Batman  Batmobile 1940-04-25
 			2  Catwoman   Bullwhip        NaT
 			
 			# Drop the rows where at least one element is missing.
 			>>> df.dropna()
 			     name        toy       born
 			1  Batman  Batmobile 1940-04-25
 			
 			# Drop the columns where at least one element is missing.
 			>>> df.dropna(axis='columns')
 			       name
 			0    Alfred
 			1    Batman
 			2  Catwoman
 			
 			# Drop the rows where all elements are missing.
 			>>> df.dropna(how='all')
 			       name        toy       born
 			0    Alfred        NaN        NaT
 			1    Batman  Batmobile 1940-04-25
 			2  Catwoman   Bullwhip        NaT
 			
 			# Keep only the rows with at least 2 non-NA values.
 			>>> df.dropna(thresh=2)
 			       name        toy       born
 			1    Batman  Batmobile 1940-04-25
 			2  Catwoman   Bullwhip        NaT
 			
 			# Define in which columns to look for missing values.
 			>>> df.dropna(subset=['name', 'born'])
 			       name        toy       born
 			1    Batman  Batmobile 1940-04-25
 			
 			# Keep the DataFrame with valid entries in the same variable.	
 			>>> df.dropna(inplace=True)
 			>>> df
 			     name        toy       born
 			1  Batman  Batmobile 1940-04-25

对于option 2:

可以使用dropna 或者drop函数
DataFrame.drop(labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise')

  • labels: 要删除行或列的列表
  • axis: 0 行 ;1 列
	df = pd.DataFrame(np.arange(12).reshape(3,4),                 
	                  columns=['A', 'B', 'C', 'D'])
	
	>>>df
	   	   A  B   C   D
		0  0  1   2   3
		1  4  5   6   7
		2  8  9  10  11

	# 删除列
	>>> df.drop(['B', 'C'], axis=1)
	   A   D
	0  0   3
	1  4   7
	2  8  11
	>>> df.drop(columns=['B', 'C'])
	   A   D
	0  0   3
	1  4   7
	2  8  11
	
	# 删除行(索引)
	>>> df.drop([0, 1])
	   A  B   C   D
	2  8  9  10  11

对于option3

使用DataFrame.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs)

  • value: scalar, dict, Series, or DataFrame
  • dict 可以指定每一行或列用什么值填充
  • method: {‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None
  • 在列上操作
    • ffill / pad: 使用前一个值来填充缺失值
    • backfill / bfill :使用后一个值来填充缺失值
  • limit 填充的缺失值个数限制。应该不怎么用
f = pd.DataFrame([[np.nan, 2, np.nan, 0],
                   [3, 4, np.nan, 1],
                   [np.nan, np.nan, np.nan, 5],
                   [np.nan, 3, np.nan, 4]],
                   columns=list('ABCD'))
 >>> df
     A    B   C  D
0  NaN  2.0 NaN  0
1  3.0  4.0 NaN  1
2  NaN  NaN NaN  5
3  NaN  3.0 NaN  4

# 使用0代替所有的缺失值
>>> df.fillna(0)
    A   B   C   D
0   0.0 2.0 0.0 0
1   3.0 4.0 0.0 1
2   0.0 0.0 0.0 5
3   0.0 3.0 0.0 4

# 使用后边或前边的值填充缺失值
>>> df.fillna(method='ffill')
    A   B   C   D
0   NaN 2.0 NaN 0
1   3.0 4.0 NaN 1
2   3.0 4.0 NaN 5
3   3.0 3.0 NaN 4

>>>df.fillna(method='bfill')
     A	B	C	D
0	3.0	2.0	NaN	0
1	3.0	4.0	NaN	1
2	NaN	3.0	NaN	5
3	NaN	3.0	NaN	4

# Replace all NaN elements in column ‘A', ‘B', ‘C', and ‘D', with 0, 1, 2, and 3 respectively.
# 每一列使用不同的缺失值
>>> values = {'A': 0, 'B': 1, 'C': 2, 'D': 3}
>>> df.fillna(value=values)
    A   B   C   D
0   0.0 2.0 2.0 0
1   3.0 4.0 2.0 1
2   0.0 1.0 2.0 5
3   0.0 3.0 2.0 4

#只替换第一个缺失值
 >>>df.fillna(value=values, limit=1)
    A   B   C   D
0   0.0 2.0 2.0 0
1   3.0 4.0 NaN 1
2   NaN 1.0 NaN 5
3   NaN 3.0 NaN 4

房价分析:

在此问题中,只有bedroom一列有缺失值,按照此三种方法处理代码为:

# option 1 将含有缺失值的行去掉
housing.dropna(subset=["total_bedrooms"])  

# option 2 将"total_bedrooms"这一列从数据中去掉
housing.drop("total_bedrooms", axis=1)  

 # option 3 使用"total_bedrooms"的中值填充缺失值
median = housing["total_bedrooms"].median()
housing["total_bedrooms"].fillna(median) 

sklearn提供了处理缺失值的 Imputer类,具体的使用教程在这:https://www.jb51.net/article/259441.htm

总结

到此这篇关于Python pandas处理缺失值(dropna、drop、fillna)的文章就介绍到这了,更多相关pandas处理缺失值内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

Python pandas处理缺失值方法详解(dropna、drop、fillna)的更多相关文章

  1. Pandas如何将表格的前几行生成html实战案例

    这篇文章主要介绍了Pandas如何将表格的前几行生成html实战案例,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下

  2. Python图像运算之图像阈值化处理详解

    这篇文章将详细讲解图像阈值化处理,涉及阈值化处理、固定阈值化处理和自适应阈值化处理,这是图像边缘检测或图像增强等处理的基础,感兴趣的可以了解一下

  3. pandas如何计算同比环比增长

    这篇文章主要介绍了pandas如何计算同比环比增长,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  4. python sklearn与pandas实现缺失值数据预处理流程详解

    对于缺失值的处理,主要配合使用sklearn.impute中的SimpleImputer类、pandas、numpy。其中由于pandas对于数据探索、分析和探查的支持较为良好,因此围绕pandas的缺失值处理较为常用

  5. 浅谈JS日期(Date)处理函数

    这篇文章主要整理了一下JS日期(Date)处理函数,算是对自己近期学习javascript的一个小小的总结,这里分享给大家

  6. Ajax上传实现根据服务器端返回数据进行js处理的方法

    这篇文章主要介绍了Ajax上传实现根据服务器端返回数据进行js处理的方法,实例分析了Ajax请求及java处理并返回服务器端数据请求的相关技巧

  7. 浅谈PHP中的错误处理和异常处理

    下面小编就为大家带来一篇浅谈PHP中的错误处理和异常处理。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧

  8. Python使用pandas将表格数据进行处理

    这篇文章主要介绍了Python使用pandas将表格数据进行处理,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感兴趣的小伙伴可以参考一下

  9. 详解Node.js异步处理的各种写法

    这篇文章主要介绍了Node.js异步处理的各种写法,本文给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下

  10. Java异常分类处理抛出捕获操作详解

    异常就是不正常,比如当我们身体出现了异常我们会根据身体情况选择喝开水、吃药、看病、等 异常处理方法。 java异常处理机制是我们java语言使用异常处理机制为程序提供了错误处理的能力,程序出现的错误,程序可以安全的退出,以保证程序正常的运行等

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部