一、绘制散点图

实现功能:

python绘制散点图,展现两个变量间的关系,当数据包含多组时,使用不同颜色和形状区分。

实现代码:

import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings(action='once')
plt.style.use('seaborn-whitegrid')
sns.set_style("whitegrid")
print(mpl.__version__)
print(sns.__version__)
def draw_scatter(file):
    # Import dataset
    midwest = pd.read_csv(file)
    # Prepare Data
    # Create as many colors as there are unique midwest['category']
    categories = np.unique(midwest['category'])
    colors = [plt.cm.Set1(i / float(len(categories) - 1)) for i in range(len(categories))]
    # Draw Plot for Each Category
    plt.figure(figsize=(10, 6), dpi=100, facecolor='w', edgecolor='k')

    for i, category in enumerate(categories):
        plt.scatter('area', 'poptotal', data=midwest.loc[midwest.category == category, :],s=20,c=colors[i],label=str(category))
    # Decorations
    plt.gca().set(xlim=(0.0, 0.1), ylim=(0, 90000),)
    plt.xticks(fontsize=10)
    plt.yticks(fontsize=10)
    plt.xlabel('Area', fontdict={'fontsize': 10})
    plt.ylabel('Population', fontdict={'fontsize': 10})
    plt.title("Scatterplot of Midwest Area vs Population", fontsize=12)
    plt.legend(fontsize=10)
    plt.show()
draw_scatter("F:\数据杂坛\datasets\midwest_filter.csv")

实现效果:

二、绘制边界气泡图

实现功能:

气泡图是散点图中的一种类型,可以展现三个数值变量之间的关系,之前的文章介绍过一般的散点图都是反映两个数值型变量的关系,所以如果还想通过散点图添加第三个数值型变量的信息,一般可以使用气泡图。气泡图的实质就是通过第三个数值型变量控制每个散点的大小,点越大,代表的第三维数值越高,反之亦然。而边界气泡图则是在气泡图添加第四个类别型变量的信息,将一些重要的点选出来并连接。

实现代码:

import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
from scipy.spatial import ConvexHull
warnings.filterwarnings(action='once')
plt.style.use('seaborn-whitegrid')
sns.set_style("whitegrid")
print(mpl.__version__)
print(sns.__version__)

def draw_scatter(file):
    # Step 1: Prepare Data
    midwest = pd.read_csv(file)

    # As many colors as there are unique midwest['category']
    categories = np.unique(midwest['category'])
    colors = [plt.cm.Set1(i / float(len(categories) - 1)) for i in range(len(categories))]

    # Step 2: Draw Scatterplot with unique color for each category
    fig = plt.figure(figsize=(10, 6), dpi=80, facecolor='w', edgecolor='k')

    for i, category in enumerate(categories):
        plt.scatter('area','poptotal',data=midwest.loc[midwest.category == category, :],s='dot_size',c=colors[i],label=str(category),edgecolors='black',linewidths=.5)
    # Step 3: Encircling
    # https://stackoverflow.com/questions/44575681/how-do-i-encircle-different-data-sets-in-scatter-plot
    def encircle(x, y, ax=None, **kw):  # 定义encircle函数,圈出重点关注的点
        if not ax: ax = plt.gca()
        p = np.c_[x, y]
        hull = ConvexHull(p)
        poly = plt.Polygon(p[hull.vertices, :], **kw)
        ax.add_patch(poly)
    # Select data to be encircled
    midwest_encircle_data1 = midwest.loc[midwest.state == 'IN', :]
    encircle(midwest_encircle_data1.area,midwest_encircle_data1.poptotal,ec="pink",fc="#74C476",alpha=0.3)
    encircle(midwest_encircle_data1.area,midwest_encircle_data1.poptotal,ec="g",fc="none",linewidth=1.5)
    midwest_encircle_data6 = midwest.loc[midwest.state == 'WI', :]
    encircle(midwest_encircle_data6.area,midwest_encircle_data6.poptotal,ec="pink",fc="black",alpha=0.3)
    encircle(midwest_encircle_data6.area,midwest_encircle_data6.poptotal,ec="black",fc="none",linewidth=1.5,linestyle='--')
    # Step 4: Decorations
    plt.gca().set(xlim=(0.0, 0.1),ylim=(0, 90000),)
    plt.xticks(fontsize=12)
    plt.yticks(fontsize=12)
    plt.xlabel('Area', fontdict={'fontsize': 14})
    plt.ylabel('Population', fontdict={'fontsize': 14})
    plt.title("Bubble Plot with Encircling", fontsize=14)
    plt.legend(fontsize=10)
    plt.show()
draw_scatter("F:\数据杂坛\datasets\midwest_filter.csv")

实现效果:

到此这篇关于python可视化分析绘制散点图和边界气泡图的文章就介绍到这了,更多相关python绘制内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

python可视化分析绘制散点图和边界气泡图的更多相关文章

  1. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  2. 如何在Xcode 8中启用Visual Memory Debugger?

    我将项目从以前版本的Xcode迁移到Xcode8.我想要的是使用新的可视化内存调试器.它可用于新项目,但在我导入的项目中完全缺少.为什么是这样?

  3. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  4. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  5. Swift - 继承UIView实现自定义可视化组件附记分牌样例

    在iOS开发中,如果创建一个自定义的组件通常可以通过继承UIView来实现。下面以一个记分牌组件为例,演示了组件的创建和使用,以及枚举、协议等相关知识的学习。效果图如下:组件代码:scoreView.swift123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051importUIKitenumscoreType{caseCommon//普通分数面板Best//最高分面板}pr

  6. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  7. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  8. 你没看错:Swift可以直接调用Python函数库

    上周Perfect又推出了新一轮服务器端Swift增强函数库:Perfect-Python。对,你没看错,在服务器端Swift其实可以轻松从其他语种的函数库中直接拿来调用,不需要修改任何内容。以如下python脚本为例:Perfect-Python可以用下列方法封装并调用以上函数,您所需要注意的仅仅是其函数名称以及参数。

  9. Swift中的列表解析

    在Swift中完成这个的最简单的方法是什么?我在寻找类似的东西:从Swift2.x开始,有一些与你的Python样式列表解析相当的东西。(在这个意义上,它更像是Python的xrange。如果你想保持集合懒惰一路通过,只是这样说:与Python中的列表解析语法不同,Swift中的这些操作遵循与其他操作相同的语法。

  10. 使用自动布局可视化格式与Swift?

    我一直在试图使用AutolayoutVisualFormatLanguageinSwift,使用NSLayoutConstraint.constraintsWithVisualFormat。这里有一些例子,没有什么有用的代码,但就我可以告诉应该让类型检查器快乐:但是,这会触发编译器错误:“Cannotconverttheexpression’stype‘[AnyObject]!’totype‘St

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部