前言

在很多情况下,我们需要遍历图,得到图的一些性质,例如,找出图中与指定的顶点相连的所有顶点,或者判定某个顶点与指定顶点是否相通,是非常常见的需求。

有关图的搜索,最经典的算法有深度优先搜索和广度优先搜索,接下来我们分别讲解这两种搜索算法。

学习本文前请先阅读这篇文章 【数据结构与算法】图的基础概念和数据模型。

深度优先搜索算法

所谓的深度优先搜索,指的是在搜索时,如果遇到一个结点既有子结点,又有兄弟结点,那么先找子结点,然后找兄弟结点。

如上图所示:

由于边是没有方向的,所以,如果4和5顶点相连,那么4会出现在5的相邻链表中,5也会出现在4的相邻链表中。

为了不对顶点进行重复搜索,应该要有相应的标记来表示当前顶点有没有搜索过,可以使用一个布尔类型的数组boolean[V] marked,索引代表顶点,值代表当前顶点是否已经搜索,如果已经搜索,标记为true,

如果没有搜索,标记为false;

API设计

类名 DepthFirstSearch
成员变量 1.private boolean[] marked: 索引代表顶点,值表示当前顶点是否已经被搜索2.private int count:记录有多少个顶点与s顶点相通
构造方法 DepthFirstSearch(Graph G,int s):构造深度优先搜索对象,使用深度优先搜索找出G图中s顶点的所有相通顶点
成员方法 1.private void dfs(Graph G, int v):使用深度优先搜索找出G图中v顶点的所有相通顶点2.public boolean marked(int w):判断w顶点与s顶点是否相通3.public int count():获取与顶点s相通的所有顶点的总数

代码实现

/**
 * 图的深度优先搜索算法
 *
 * @author alvin
 * @date 2022/10/31
 * @since 1.0
 **/
public class DepthFirstSearch {
    //索引代表顶点,值表示当前顶点是否已经被搜索
    private boolean[] marked;
    //记录有多少个顶点与s顶点相通
    private int count;

    //构造深度优先搜索对象,使用深度优先搜索找出G图中s顶点的所有相邻顶点
    public DepthFirstSearch(Graph G, int s) {
        //创建一个和图的顶点数一样大小的布尔数组
        marked = new boolean[G.V()];
        dfs(G, s);
    }

    //使用深度优先搜索找出G图中v顶点的所有相邻顶点
    private void dfs(Graph G, int v) {
        //把当前顶点标记为已搜索
        marked[v] = true;
        //遍历v顶点的邻接表,得到每一个顶点w
        for (Integer w : G.adj(v)) {
            //遍历v顶点的邻接表,得到每一个顶点w
            if (!marked[w]) {
                //如果当前顶点w没有被搜索过,则递归搜索与w顶点相通的其他顶点
                dfs(G, w);
            }
        }

        //相通的顶点数量 1
        count  ;
    }

    //判断w顶点与s顶点是否相通
    public boolean marked(int w) {
        return marked[w];
    }

    //获取与顶点s相通的所有顶点的总数
    public int count() {
        return count;
    }
}

测试:

public class DepthFirstSearchTest {

    @Test
    public void test() {
        //准备Graph对象
        Graph G = new Graph(13);
        G.addEdge(0,5);
        G.addEdge(0,1);
        G.addEdge(0,2);
        G.addEdge(0,6);
        G.addEdge(5,3);
        G.addEdge(5,4);
        G.addEdge(3,4);
        G.addEdge(4,6);
        G.addEdge(7,8);
        G.addEdge(9,11);
        G.addEdge(9,10);
        G.addEdge(9,12);
        G.addEdge(11,12);

        //准备深度优先搜索对象
        DepthFirstSearch search = new DepthFirstSearch(G, 0);
        //测试与某个顶点相通的顶点数量
        int count = search.count();
        System.out.println("与起点0相通的顶点的数量为:" count);
        //测试某个顶点与起点是否相同
        boolean marked1 = search.marked(5);
        System.out.println("顶点5和顶点0是否相通:" marked1);
        boolean marked2 = search.marked(7);
        System.out.println("顶点7和顶点0是否相通:" marked2);
    }
}

广度优先搜素算法

所谓的广度优先搜索,指的是在搜索时,如果遇到一个结点既有子结点,又有兄弟结点,那么先找兄弟结点,然后找子结点。

  • 可以通过借助一个辅助队列实现,先将1加入到队列中
  • 然后取出1,将1的相邻顶点加入到队列中
  • 依次递归,如下图所示:

API设计

类名 BreadthFirstSearch
成员变量 1.private boolean[] marked: 索引代表顶点,值表示当前顶点是否已经被搜索2.private int count:记录有多少个顶点与s顶点相通3.private Queue waitSearch: 用来存储待搜索邻接表的点
构造方法 BreadthFirstSearch(Graph G,int s):构造广度优先搜索对象,使用广度优先搜索找出G图中s顶点的所有相邻顶点
成员方法 1.private void bfs(Graph G, int v):使用广度优先搜索找出G图中v顶点的所有相邻顶点2.public boolean marked(int w):判断w顶点与s顶点是否相通3.public int count():获取与顶点s相通的所有顶点的总数

代码实现

/**
 * 图的广度优先搜索算法
 *
 * @author alvin
 * @date 2022/10/31
 * @since 1.0
 **/
public class BreadthFirstSearch {
    //索引代表顶点,值表示当前顶点是否已经被搜索
    private boolean[] marked;
    //记录有多少个顶点与s顶点相通
    private int count;
    //用来存储待搜索邻接表的点
    private Queue<Integer> waitSearch;

    //构造广度优先搜索对象,使用广度优先搜索找出G图中s顶点的所有相邻顶点
    public BreadthFirstSearch(Graph G, int s) {
        this.marked = new boolean[G.V()];
        this.count = 0;
        this.waitSearch = new ArrayDeque<>();

        bfs(G, s);
    }

    //使用广度优先搜索找出G图中v顶点的所有相邻顶点
    private void bfs(Graph G, int v) {
        //把当前顶点v标识为已搜索
        marked[v] = true;
        //让顶点v进入队列,待搜索
        waitSearch.add(v);
        //通过循环,如果队列不为空,则从队列中弹出一个待搜索的顶点进行搜索
        while (!waitSearch.isEmpty()) {
            //弹出一个待搜索的顶点
            Integer wait = waitSearch.poll();
            //遍历wait顶点的邻接表
            for (Integer w : G.adj(wait)) {
                if (!marked[w]) {
                    bfs(G, w);
                }
            }
        }
        //让相通的顶点 1;
        count  ;

    }

    //判断w顶点与s顶点是否相通
    public boolean marked(int w) {
        return marked[w];
    }

    //获取与顶点s相通的所有顶点的总数
    public int count() {
        return count;
    }
}

测试代码:

public class BreadthFirstSearchTest {

    @Test
    public void test() {
        //准备Graph对象
        Graph G = new Graph(13);
        G.addEdge(0, 5);
        G.addEdge(0, 1);
        G.addEdge(0, 2);
        G.addEdge(0, 6);
        G.addEdge(5, 3);
        G.addEdge(5, 4);
        G.addEdge(3, 4);
        G.addEdge(4, 6);
        G.addEdge(7, 8);
        G.addEdge(9, 11);
        G.addEdge(9, 10);
        G.addEdge(9, 12);
        G.addEdge(11, 12);

        //准备广度优先搜索对象
        BreadthFirstSearch search = new BreadthFirstSearch(G, 0);
        //测试与某个顶点相通的顶点数量
        int count = search.count();
        System.out.println("与起点0相通的顶点的数量为:"   count);
        //测试某个顶点与起点是否相同
        boolean marked1 = search.marked(5);
        System.out.println("顶点5和顶点0是否相通:"   marked1);
        boolean marked2 = search.marked(7);
        System.out.println("顶点7和顶点0是否相通:"   marked2);
    }
}

案例应用

某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。目前的道路状况,9号城市和10号城市是否相通?9号城市和8号城市是否相通?

测试数据格式如上图所示,总共有20个城市,目前已经修改好了7条道路,问9号城市和10号城市是否相通?9号城市和8号城市是否相通?

解题思路:

  • 创建一个图Graph对象,表示城市;
  • 分别调用addEdge(0,1),addEdge(6,9),addEdge(3,8),addEdge(5,11),addEdge(2,12),addEdge(6,10),addEdge(4,8),表示已经修建好的道路把对应的城市连接起来;
  • 通过Graph对象和顶点9,构建DepthFirstSearch对象或BreadthFirstSearch对象;
  • 调用搜索对象的marked(10)方法和marked(8)方法,即可得到9和城市与10号城市以及9号城市与8号城市是否相通。

代码实现:

public class TrafficProjectGraph {

    public static void main(String[] args) throws Exception{
        //城市数量
        int totalNumber =  20;
        Graph G = new Graph(totalNumber);
        //添加城市的交通路线
        G.addEdge(0,1);
        G.addEdge(6,9);
        G.addEdge(3,8);
        G.addEdge(5,11);
        G.addEdge(2,12);
        G.addEdge(6,10);
        G.addEdge(4,8);

        //构建一个深度优先搜索对象,起点设置为顶点9
        DepthFirstSearch search = new DepthFirstSearch(G, 9);

        //调用marked方法,判断8顶点和10顶点是否与起点9相通
        System.out.println("顶点8和顶点9是否相通:" search.marked(8));
        System.out.println("顶点10和顶点9是否相通:" search.marked(10));

    }
}

结果:

以上就是Java数据结构之图的两种搜索算法详解的详细内容,更多关于Java图搜索算法的资料请关注Devmax其它相关文章!

Java数据结构之图的两种搜索算法详解的更多相关文章

  1. swift篇第一期:简单的数据结构

    首先我们可以去使用Playground来编码,并且会实时的显示对应的编码信息,这样我们就不用每次都去运行程序来显示输出的东西了哦,也方便了我们对某些语句的验证,这个是比较赞的var与let前者为可变修饰符,后者为不可变从字面意思我们就可以很好的区分了常用的类型呢,跟其他语言基本相同啦,主要有几种:1.int类型2.Float,Double类型3.String类型4.Boolean类型当我们去声明一

  2. Swift 集合数据结构性能分析

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  3. Swift中的集合类数据结构

    在那种情况下,你将会需要一种基本的集合类数据结构。继续学习,你将会比较成熟的Cocoa数据结构与对应的纯Swift结构的性能。常见iOS数据结构iOS中三种最常用的数据结构是arrays,dictionaries和sets。除了在Swift和Objective-C中旧的Foundation框架中的数据结构,现在又有了新的仅支持Swift版本的数据结构与语言紧密结合在一起。Swift数组是同质的,意味着每一个Swift数组都只包含一种类型的对象。

  4. 11.Swift 中的类和结构体

    举例来说,以下情境中适合使用结构体:1.几何形状的大小,封装一个width属性和height属性,两者均为Double类型。这次就讲到这里,下次我们继续

  5. a place you can learn algorithms and data structures(算法和数据结构) in swift

    https://github.com/raywenderlich/swift-algorithm-club

  6. Swift3.0 类和结构体的选择

    结构体实例总是通过值传递,类实例总是通过引用传递先说说值类型和引用类型的区别值类型被赋予给一个变量、常量或者被传递给一个函数的时候,其值会被拷贝在Swift中,所有的结构体和枚举类型都是值类型。实际中,这意味着绝大部分的自定义数据构造都应该是类,而非结构体”Swift中,许多基本类型,诸如String,Array和Dictionary类型均以结构体的形式实现。Objective-C中Nsstring,NSArray和NSDictionary类型均以类的形式实现,而并非结构体。

  7. 【Swift】结构体和类

    Swift中结构体和类有很多共同点与结构体相比,类还有如下的附加功能:结构体和枚举是值类型值类型被赋予给一个变量、常量或者被传递给一个函数的时候,其值会被拷贝。为了达到这个目的,Swift内建了两个恒等运算符:类和结构体的选择在你的代码中,你可以使用类和结构体来定义你的自定义数据类型。实际中,这意味着绝大部分的自定义数据构造都应该是类,而非结构体。Swift中,许多基本类型,诸如String,Array和Dictionary类型均以结构体的形式实现。

  8. 如何在Swift中创建打包数据结构?

    我正在将一个项目从Objective-C转换为Swift,我正在使用一个打包的结构来输入通过套接字发送的转换二进制消息:我不确定Swift中最好的方法是什么,我能得到的最接近的近似值是:翻译中丢失了两个重要的细节:没有保证整数类型的比特,并且没有结构打包.我不认为这可以在Swift中表达,但如果是这样,怎么样?

  9. android – 如何正确删除保留的实例片段

    解决方法正如@Luksprog所建议的,以下方法有效.但是,它仍然无法解释为什么通过onDetach完成的先前清理不起作用.如果有人能解释为什么这个解决方案有效,而以前没有,我会非常感激.版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  10. android – 数组适配器notifyDataSetChanged()将无法正常工作

    .有任何想法吗?

随机推荐

  1. 基于EJB技术的商务预订系统的开发

    用EJB结构开发的应用程序是可伸缩的、事务型的、多用户安全的。总的来说,EJB是一个组件事务监控的标准服务器端的组件模型。基于EJB技术的系统结构模型EJB结构是一个服务端组件结构,是一个层次性结构,其结构模型如图1所示。图2:商务预订系统的构架EntityBean是为了现实世界的对象建造的模型,这些对象通常是数据库的一些持久记录。

  2. Java利用POI实现导入导出Excel表格

    这篇文章主要为大家详细介绍了Java利用POI实现导入导出Excel表格,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

  3. Mybatis分页插件PageHelper手写实现示例

    这篇文章主要为大家介绍了Mybatis分页插件PageHelper手写实现示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  4. (jsp/html)网页上嵌入播放器(常用播放器代码整理)

    网页上嵌入播放器,只要在HTML上添加以上代码就OK了,下面整理了一些常用的播放器代码,总有一款适合你,感兴趣的朋友可以参考下哈,希望对你有所帮助

  5. Java 阻塞队列BlockingQueue详解

    本文详细介绍了BlockingQueue家庭中的所有成员,包括他们各自的功能以及常见使用场景,通过实例代码介绍了Java 阻塞队列BlockingQueue的相关知识,需要的朋友可以参考下

  6. Java异常Exception详细讲解

    异常就是不正常,比如当我们身体出现了异常我们会根据身体情况选择喝开水、吃药、看病、等 异常处理方法。 java异常处理机制是我们java语言使用异常处理机制为程序提供了错误处理的能力,程序出现的错误,程序可以安全的退出,以保证程序正常的运行等

  7. Java Bean 作用域及它的几种类型介绍

    这篇文章主要介绍了Java Bean作用域及它的几种类型介绍,Spring框架作为一个管理Bean的IoC容器,那么Bean自然是Spring中的重要资源了,那Bean的作用域又是什么,接下来我们一起进入文章详细学习吧

  8. 面试突击之跨域问题的解决方案详解

    跨域问题本质是浏览器的一种保护机制,它的初衷是为了保证用户的安全,防止恶意网站窃取数据。那怎么解决这个问题呢?接下来我们一起来看

  9. Mybatis-Plus接口BaseMapper与Services使用详解

    这篇文章主要为大家介绍了Mybatis-Plus接口BaseMapper与Services使用详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  10. mybatis-plus雪花算法增强idworker的实现

    今天聊聊在mybatis-plus中引入分布式ID生成框架idworker,进一步增强实现生成分布式唯一ID,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

返回
顶部