引言

  • 最近再做图像处理相关的操作的时间优化,用到了OpenCV和Pillow两个库,两个库各有优缺点。各位小伙伴需要按照自己需求选用。
  • 本篇博客做了简单整理,对常用操作做了对比整理,以及给出具体运行时间说明。

OpenCV和Pillow的优缺点对比

优点 缺点
OpenCV 由C和C 编写,跨平台,有着多个语言的实现,部署比较方便 对显示中文支持较差、Python下常用函数不是太好看-_-!
Pillow 常用函数操作封装较好,对显示中文字体有着很好的支持 处理时间较慢

测试环境:

  • OS: Windows10
  • Python: 3.7.13
  • OpenCV: 4.6.0.66
  • numpy: 1.21.6
  • Pillow: 9.2.0

测试图像 :

  • PNG图像: test_demo.png
  • JPG图像:test_demo.jpg

读取图像的通道顺序区别:

  • OpenCV读取图像,通道顺序是:BGR
  • Pillow读取图像,通道顺序是:RGB

获得图像shape区别:

  • OpenCV.shape(height, width, channel
  • Pillow.size(width, height)

示例代码:

import cv2
from PIL import Image

img_path = 'images/test_demo.png'

cv_img = cv2.imread(img_path)
height, width, channel = cv_img.shape

pillow_img = Image.open(img_path)
width, height = pillow_img.size

读写图像

读图像

示例代码:

import cv2
from PIL import Image
import numpy as np

png_img_path = 'images/test_demo.png'
jpg_img_path = 'images/test_demo.jpg'

# 由jupyter notebook中魔法命令:%%timeit测得
# 169 ms ± 1.68 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
cv_img = cv2.imread(png_img_path)    

# 52.9 ms ± 541 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
cv_img = cv2.imread(jpg_img_path)

# 300 ms ± 8.45 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
pillow_img = Image.open(png_img_path)
pillow_img = np.array(pillow_img)

# 47.4 ms ± 1.87 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
pillow_img = Image.open(jpg_img_path)
pillow_img = np.array(pillow_img)

小结:

  • 读取图像格式为PNG,且都转为np.array格式,优先选择OpenCV。
  • 读取图像格式为JPG,且都转为np.array格式,速度相差不大,按需选取即可。

写图像

示例代码:

save_png_path = 'output/result.png'
save_jpg_path = 'output/result.jpg'

cv_img = cv2.imread(png_img_path)
pillow_img = Image.open(png_img_path)

# 346 ms ± 11.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
cv2.imwrite(save_png_path, cv_img)

# 158 ms ± 4.03 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
cv2.imwrite(save_jpg_path, cv_img)

# 2.81 s ± 38.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
pillow_img.save(save_png_path)

# 51.3 ms ± 1.72 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
t = pillow_img.convert('RGB') 
t.save(save_jpg_path)

小结:

  • 写图像格式为PNG,优先选择OpenCV。
  • 写图像格式为JPG,选择Pillow。

缩放图像

示例代码:

png_img_path = 'images/test_demo.png'

resize_shape = (2048, 2048)
cv_img = cv2.imread(png_img_path)
pillow_img = Image.open(png_img_path)

# 6.93 ms ± 173 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
cv2.resize(cv_img, resize_shape, interpolation=cv2.INTER_CUBIC)

# 151 ms ± 2.21 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
pillow_img.resize(resize_shape, resample=Image.Resampling.BICUBIC)

小结: OpenCV速度完胜Pillow

旋转图像

示例代码:

angle = 38

# 23.6 ms ± 732 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
h, w = cv_img.shape[:2]
M = cv2.getRotationMatrix2D((w / 2, h / 2), angle, 1)
rot_img = cv2.warpAffine(cv_img, M, (w, h))

# 82.1 ms ± 2.37 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
rot_img_pillow = np.array(pillow_img.rotate(angle))

小结:OpenCV速度完胜Pillow 

总结:

  • 如果可以选择,优先选择OpenCV处理图像
  • Pillow可以用来处理显示中文相关问题

到此这篇关于python中 OpenCV和Pillow处理图像操作及时间对比的文章就介绍到这了,更多相关python OpenCV处理图像 内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

python中 OpenCV和Pillow处理图像操作及时间对比的更多相关文章

  1. iOS使用openCV检测来自摄像头的矩形

    如果我在处理它之前克隆matimage,通过记录它,它似乎处理图像甚至找到矩形,但矩形不会被绘制到图像输出到imageView.我很确定我错过了一些东西,可能是因为我没有正确传递某个对象,指向对象的指针等等,而我需要修改的对象则没有.无论如何,如果这不是正确的方法,我真的很感谢他们做这样的事情的教程或例子,使用openCV或GPUImage…它不需要尝试使用matimage来设置imageView.image,而只需要将matimage转换为在imageView中实际修改,因为CvVideoCamera已

  2. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  3. 使用Xcode为OS X Lion / Mountain Lion编译OpenCV(2.3.1)

    任何人都可以为我提供一些如何使用Xcode在OSXLion上编译OpenCV2.3.1的详细指南吗?我对此感到生气…我得到了源码,使用cmake创建Xcode模板并尝试构建它,但它失败了大约200个错误.提前致谢,大教堂解答我的回答帖子.解决方法详细指南如何使用MacPorts在Xcode4.2.1的OSXLion下启动和运行OpenCV2.3.1编辑08/06/2012:这也适用于OpenCV2.4.1.只需确保您获得最新版本的Xcode并安装“命令行工具”.编辑15/08/2012:使用Mountai

  4. ios – OpenCV构建问题,找不到ext/atomicity.h

    我得到编译器错误抱怨在构建包含OpenCV的项目时.环境是针对iOS的Xcode4.5.它为模拟器编译良好,但在为设备构建时失败.这是错误文本:我正在使用opencv2.framework,使用指令here构建cmake.解决方法默认情况下,XCode4.5使用libc(支持C11的LLVMC标准库)生成要构建的新项目.但OpenCV期望针对GNUlibstd

  5. 从IOS / iPad / iPhone的最大速度

    我使用OpenCVforiOS完成计算密集型应用程序.当然这很慢.但它比我的PC原型慢了200倍.所以我正在优化它.从最初的15秒,我能够获得0.4秒的速度.我想知道我是否找到了所有的东西以及别人想要分享的东西.我做了什么:>将OpenCV中的“double”数据类型替换为“float”.双倍是64位,32位cpu不能轻易处理,所以浮动给了我一些速度.OpenCV经常使用双倍.>为编译器选项添加了

  6. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  7. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  8. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  9. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  10. 在Swift iOS中使用OpenCV

    在我的xcode项目中添加OpenCV2框架后,我试图搜索samlpes或教程与swift集成。有什么好的教程同样吗?OpenCV是用C编写的框架。苹果的reference告诉我们YoucannotimportC++codedirectlyintoSwift.Instead,createanObjective-CorCwrapperforC++code.所以你不能在一个swift项目中直接导入和使用OpenCV,但这实际上并不坏,因为你(需要)继续使用框架的C语法,这是在网络上有很多文档。那么你怎么进行呢

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部