图像标注在计算机视觉中很重要,计算机视觉是一种技术,它允许计算机从数字图像或视频中获得高水平的理解力,并以人类的方式观察和解释视觉信息。注释,通常被称为图片标签,是大多数计算机视觉模型发展中的一个关键阶段。本文将重点讨论在OpenCV的帮助下创建这些注释。以下是将要涉及的主题。

目录

  • 图像注解
  • 对图像注释的需求
  • 图像注解的类型
  • 用OpenCV实现图像注解

机器学习模型的表现越好,你的注释的质量就越高。让我们了解一下图像注释。

图像注解

在一个特定的数据集中对图像进行分类以训练机器学习模型的过程被称为图像注释。当人工注释完成后,被标记的图片由机器学习或深度学习模型处理,以重复注释,不需要人工干预。

因此,图片注释被利用来表明你的系统需要识别的方面。监督学习是在给定标记数据的情况下训练一个ML模型的过程。

图片注解建立了模型试图复制的标准,因此标签中的任何错误也会被重复。因此,正确的图片注释为训练神经网络奠定了基础,使注释成为计算机视觉中最关键的工作之一。

图片注释可以手工完成,也可以在自动注释工具的帮助下完成。自动注释技术通常是预先训练好的算法,可以准确地对照片进行标注。他们的注释是复杂的注释工作所需要的,如构建片段掩码,这需要时间来生成。

你是否在寻找数据科学中使用的Python库的完整库。 查看这里.

对图片注释的需求

对图片进行标注是功能数据集所需要的,因为它能让训练模型了解到图片的相关方面(类别),然后它可以用来在新鲜的、从未见过的图片中识别这些类别。

图像注释产生了训练数据,有监督的人工智能模型可以从中学习。注释图像的方式预测了人工智能在查看和学习图像后的行为方式。因此,在训练中经常描述糟糕的注释,导致模型做出糟糕的预测。

在应对独特的挑战和在新领域使用人工智能时,注释数据是非常重要的。对于像图像分类和分割这样的典型任务,经常有预训练的模型,它们可以通过使用转移学习以最小的输入量定制到特定的用例。

另一方面,从头开始训练一个全面的模型,经常需要大量的注释数据,分为训练集、验证集和测试集,这很难产生,也很费时。无监督算法,不需要注释数据,可以直接在原始数据上训练。

图像注解的类型

有三种盛行的图片注释方法,你为你的用例选择的方法将由项目的复杂性决定。每种使用的高质量图片数据越多,人工智能的预测就越准确。

分类法

分类是最简单、最快速的图片注释方法,因为它只需为一张图片分配一个标签。例如,你可以希望对一组杂货店货架的照片进行分类,以确定哪些照片含有苏打水,哪些不含有。

这种方法非常适合捕捉抽象信息,比如上面的例子,或者一天中的时间,如果图片中有汽车,或者从一开始就过滤掉不符合标准的照片。虽然分类法在提供单一的、高层次的标签方面是最快的,但它也是我们强调的三个类别中最模糊的,因为它不能确定物品在图像中的位置。

物体检测

注释者使用对象检测给图片中的特定事物贴上标签。因此,如果一张图片被标记为有冰激凌,这就更进一步说明了冰激凌在图片中的位置,或者如果特别是搜索可可冰激凌的位置。物体检测可以通过各种方法来完成,包括。

  • 边界框。注释者使用矩形和正方形来定义目标物体在二维中的位置。这是最经常使用的图片注释方法之一。立方体,也被称为三维边界框,被注释者用来指定目标对象的位置和深度。
  • 多边形分割。注释者采用复杂的多边形来指定不对称的目标项目的位置,而这些目标项目并不简单地适合在一个盒子里。
  • 线条。注释器检测图片中的基本边界线和曲线,用线条和样条来区分部分。例如,注释器可以为自驾车图片注释项目命名高速公路上的众多车道。

这种方法仍然不是最精确的,因为物体检测允许在使用方框或线条时出现重叠。它所提供的是项目的大致位置,同时仍然是一个相当快速的注释程序。

语义分割

语义分割克服了物体识别中的重叠问题,保证了图像的每个组成部分只属于一个类别。这种方法通常在像素层面上进行,需要注释者为每个像素分配类别(如行人、汽车或标志)。这有助于教导人工智能模型如何检测和分类某些项目,即使它们被遮挡。例如,如果一个购物车遮住了图像的一部分,可以用语义分割来定义可可冰淇淋的样子,直到像素级别,让模型知道它实际上仍然是可可冰淇淋。

用OpenCV实现图像注解

在这篇文章中,我们将使用边界框和颜色分割方法进行图像注释。

在边界框中,方法将是在物体周围手动绘制不同的边界形状,并在其中添加一些文字。

在颜色分割中,我们将使用KNN算法来分割查询图像中物体的颜色。颜色将根据 "K "值被分割,"K "是最近的邻居的数量,图像上被分割的部分可以被视为注释的部分。

包围盒方法

导入必要的库

import cv2 
import numpy as np
import matplotlib.pyplot as plt

读取查询图像

input_img=cv2.imread('annotation_image.jpg',cv2.IMREAD_COLOR)

查询图像

在本文中,我们使用的是彩色图像,所以我们需要使用 "cv2.IMREAD_COLOR"。因为它指示加载一个彩色图片。任何图片的透明度都会被忽略。这是默认设置。我们也可以为这个标志传递整数值1。

在对象上画一条线

image_line=input_img.copy()
cv2.line(image_line, (900,150), (1100,150), (0,255,255), thickness=5,lineType=cv2.LINE_AA)
plt.figure(figsize=(10,10))
plt.imshow(image_line[:,:,::-1])
plt.show()

cv2.line需要输入直线的起点和终点的坐标,以及直线的厚度、透明度和颜色。

印度分析杂志

在物体周围画一个圆

image_circle=input_img.copy()
cv2.circle(image_circle, (1030,340),200, (0,255,255), thickness=5,lineType=cv2.LINE_AA)
plt.figure(figsize=(10,10))
plt.imshow(image_circle[:,:,::-1])
plt.show()

cv2.circle'接收半径和圆的坐标作为输入。其余部分与前面讨论的直线函数相同。

印度分析》杂志

在物体周围画一个矩形

image_rect=input_img.copy()
cv2.rectangle(image_rect, (900,150),(1100,530), (0,0,255), thickness=5,lineType=cv2.LINE_AA)
plt.figure(figsize=(10,10))
plt.imshow(image_rect[:,:,::-1])
plt.show()

它需要左上角的坐标和右下角的坐标来绘制矩形。

印度分析》杂志

KNN方法进行分割

导入必要的库

import cv2 
import numpy as np
import matplotlib.pyplot as plt

读取和预处理

img = cv2.cvtColor(input_img,cv2.COLOR_BGR2RGB)
image_reshape = img.reshape((-1,3))
image_2d = np.float32(image_reshape)

改变颜色的顺序,因为在OpenCV中,图像的颜色是以蓝、绿、红(BGR)来读取的。要求是红、绿、蓝(RGB)。

应用KNN

criteria = (cv2.TERM_CRITERIA_EPS   cv2.TERM_CRITERIA_MAX_ITER, 100, 1.0)
K = 4
attempts=10
ret,label,center=cv2.kmeans(twoDimage,K,None,criteria,attempts,cv2.KMEANS_PP_CENTERS)
center = np.uint8(center)
res = center[label.flatten()]
result_image = res.reshape((img.shape))

由于图像是一个高分辨率的图像,所以有很多数据点需要处理,如果迭代次数多,就会耗费时间。我们将迭代次数限制为100次,并且将ε值设置为最高值。k近邻被设置为4,尝试次数为10。

plt.figure(figsize=(10,10))
plt.imshow(result_image[:,:,::-1])
plt.show()

印度分析杂志

该算法对颜色进行了很好的分割。可以看到蓝色、白色、灰色和棕色被分开。人们可以对图像进行屏蔽,并进一步调整算法。

结论

处理数据最耗时的方面之一是数据收集和注释。然而,它是训练算法的基础,必须在可行的情况下以最大的精度执行。适当的注释经常会在后期创建模型的过程中节省大量的时间。通过这篇文章,我们已经了解了不同类型的注释和它们的实现。

参考文献

  • 上述代码的链接
  • 阅读更多关于注释的信息

The postImage annotation techniques with implementation in OpenCVappeared first onAnalytics India Magazine.

到此这篇关于在OpenCV中实现的图像标注技术的文章就介绍到这了,更多相关OpenCV图像标注内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

详解在OpenCV中实现的图像标注技术的更多相关文章

  1. iOS使用openCV检测来自摄像头的矩形

    如果我在处理它之前克隆matimage,通过记录它,它似乎处理图像甚至找到矩形,但矩形不会被绘制到图像输出到imageView.我很确定我错过了一些东西,可能是因为我没有正确传递某个对象,指向对象的指针等等,而我需要修改的对象则没有.无论如何,如果这不是正确的方法,我真的很感谢他们做这样的事情的教程或例子,使用openCV或GPUImage…它不需要尝试使用matimage来设置imageView.image,而只需要将matimage转换为在imageView中实际修改,因为CvVideoCamera已

  2. 使用Xcode为OS X Lion / Mountain Lion编译OpenCV(2.3.1)

    任何人都可以为我提供一些如何使用Xcode在OSXLion上编译OpenCV2.3.1的详细指南吗?我对此感到生气…我得到了源码,使用cmake创建Xcode模板并尝试构建它,但它失败了大约200个错误.提前致谢,大教堂解答我的回答帖子.解决方法详细指南如何使用MacPorts在Xcode4.2.1的OSXLion下启动和运行OpenCV2.3.1编辑08/06/2012:这也适用于OpenCV2.4.1.只需确保您获得最新版本的Xcode并安装“命令行工具”.编辑15/08/2012:使用Mountai

  3. ios – OpenCV构建问题,找不到ext/atomicity.h

    我得到编译器错误抱怨在构建包含OpenCV的项目时.环境是针对iOS的Xcode4.5.它为模拟器编译良好,但在为设备构建时失败.这是错误文本:我正在使用opencv2.framework,使用指令here构建cmake.解决方法默认情况下,XCode4.5使用libc(支持C11的LLVMC标准库)生成要构建的新项目.但OpenCV期望针对GNUlibstd

  4. 从IOS / iPad / iPhone的最大速度

    我使用OpenCVforiOS完成计算密集型应用程序.当然这很慢.但它比我的PC原型慢了200倍.所以我正在优化它.从最初的15秒,我能够获得0.4秒的速度.我想知道我是否找到了所有的东西以及别人想要分享的东西.我做了什么:>将OpenCV中的“double”数据类型替换为“float”.双倍是64位,32位cpu不能轻易处理,所以浮动给了我一些速度.OpenCV经常使用双倍.>为编译器选项添加了

  5. 在Swift iOS中使用OpenCV

    在我的xcode项目中添加OpenCV2框架后,我试图搜索samlpes或教程与swift集成。有什么好的教程同样吗?OpenCV是用C编写的框架。苹果的reference告诉我们YoucannotimportC++codedirectlyintoSwift.Instead,createanObjective-CorCwrapperforC++code.所以你不能在一个swift项目中直接导入和使用OpenCV,但这实际上并不坏,因为你(需要)继续使用框架的C语法,这是在网络上有很多文档。那么你怎么进行呢

  6. 在Android Studio中解决已弃用的NDK警告

    或者除了添加所有已编译的代码并设置我之前提到的标志之外,还有其他方法可以将OpenCV导入Android项目吗?任何有关这方面的帮助将不胜感激.解决方法我建议迁移到使用cmake的本机支持.您可以查看链接,该链接提供了使用cmake通过以下link添加OpenCV的分步教程.您的代码应该保持不变而不做任何更改,只有必要的操作才能弄清楚如何使用CMakeLists.txt将它们包含在构建过程中.

  7. android – opencv管理器包没找到?如何自动安装?

    我正在使用openCV,每当我运行代码时它都会给我包管理器没有安装,那么如何通过我的应用程序安装它.是必须从Play商店下载它还是我们可以在设备中自动安装它.请帮我.提前致谢.解决方法您需要使用静态初始化来包含apk中的所有OpenCV二进制文件.请参阅此文档:ApplicationDevelopmentwithStaticInitialization

  8. 如何从Android相机中找到框架的轮廓并将其转换为box2d实体?

    使用openframeworks,OpenCV和Box2D,我能够以良好的帧速率实现它.使用Android似乎是一项更复杂的任务(部分原因是我是JAVA新手).这就是我的开始:>使用“OpenCV示例–图像处理”并删除除“canny”效果之外的所有内容,这会产生一个漂亮的黑色&白色图像,非常适合找到轮廓.>从“OpenCVSample–color-blob-detection”中我抓住了在Mat中

  9. 在Android上的OpenCV中逐帧处理视频

    如果是的话,你知道任何例子.>编译适用于Android的FFMPEG也是一种选择.但是,我认为自己编写FrameGrabber和FrameRecorder有点过分.我认为除了JavaCV之外,还必须存在一些解决方案.>从API18开始,Android中有MediaCodec和Mediamuxer.也许他们可以帮助我?

  10. 使用opencv进行android角点跟踪

    当我相对于Android相机移动它时,我试图跟踪一张纸的角落的位置(您可以假设纸张将是与背景完全不同的颜色).我想找到android屏幕上每个角落的x,y坐标.我也希望能够改变纸张的角度,因此它不一定会一直呈现出完美的矩形.我正在使用opencv2.4.1forAndroid,但我在包中找不到cvgoodfeaturetotrack或cvfindcornersubpix.现在我正在考虑使用CvCa

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部