前言

使用pandas对数据操作,筛选数据时,根据任务要求有时不仅要某列中存在空值的行,并且要删除某列中指定值所在行。

1.data.dropna()

默认参数:
data.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)

1-1 axis确定删除存在缺失值的行或者是列

#删除含有缺失值的行
axis=0或axis='index'
#删除含有缺失值的列
axis=1或axis='columns'

1-2 how 确定存在缺失值时,是否删除行或者列

how='all'或how=‘any'。
 
how='all'时表示删除全是缺失值的行(列)
 
how='any'时表示删除只要含有缺失值的行(列)

1-3 thresh=n表示保留至少含有n个非na数值的行

data.dropna(thresh=2)

1-4 subset确定要在哪些列中查找缺失值

#在source和target两列中查找缺失值
data.drop(subset = ["source","target"])

1-5 inplace确定是否直接在原DataFrame修改

#删除缺失值后不在原data上修改
inplace = False
#删除缺失值后在原data上修改
inplace = True

2.data.drop

默认参数:
data.drop(
    labels=None,
    axis=0,
    index=None,
    columns=None,
    level=None,
    inplace=False,
    errors='raise',
)

2-1 labels 指定行或者列的名称

#参数axis为0表示在0轴(列)上搜索名为“姓名”的对象,然后删除对象“姓名”对应的行。
data.drop("姓名",axis = 0)
 
#参数axis为0表示在1轴(行)上搜索名为“姓名”的对象,然后删除对象“姓名”对应的列。
data.drop("姓名",axis = 1)

2-2 index 指定要删除的行

#删除data中索引为0和1的行
data.drop(index = [0,1])

2-3 columns 指定要删除的列

#删除data中列名为“source”和“target”的列
data.drop(columns=['source', 'target'])

3.实例

任务需求:删掉“ZH_Term_len”列中值为0的全部行。

3-1 统计0的数量

#统计“ZH_Term_len”一列中有多少个0
data["ZH_Term_len"].value_counts()

3-2 找出0的索引

data[(data.ZH_Term_len == 0)].index.tolist() 

3-3 使用drop函数以及index参数删除所在的行

data =  data.drop(index = data[(data.ZH_Term_len == 0)].index.tolist())

3-4 查看数据

data.info()

3-5 将索引重新排序

#会将标签重新从零开始顺序排序,使用参数设置drop=True删除旧的索引序列
data = data.reset_index(drop=True)

3-6 统计“ZH_Term_len”列中值的数量

 统计后发现,“ZH_Term_len”列中值为0的行已经全部被删除掉。

总结

到此这篇关于如何利用Pandas删除某列指定值所在行的文章就介绍到这了,更多相关Pandas删除指定值所在行内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

如何利用Pandas删除某列指定值所在的行的更多相关文章

  1. Pandas如何将表格的前几行生成html实战案例

    这篇文章主要介绍了Pandas如何将表格的前几行生成html实战案例,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下

  2. pandas如何计算同比环比增长

    这篇文章主要介绍了pandas如何计算同比环比增长,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  3. python sklearn与pandas实现缺失值数据预处理流程详解

    对于缺失值的处理,主要配合使用sklearn.impute中的SimpleImputer类、pandas、numpy。其中由于pandas对于数据探索、分析和探查的支持较为良好,因此围绕pandas的缺失值处理较为常用

  4. Ubuntu彻底删除PHP7.0的方法

    这篇文章主要介绍了Ubuntu彻底删除PHP7.0的方法,非常不错,具有一定的参考借鉴价值,需要的朋友可以参考下

  5. angularJS实现动态添加,删除div方法

    下面小编就为大家分享一篇angularJS实现动态添加,删除div方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

  6. Python实现删除windows下的长路径文件

    这篇文章主要为大家详细介绍一下如何利用Python语言实现删除windows下的长路径文件功能,文中的示例代码讲解详细,具有一定参考借鉴价值,感兴趣的可以了解一下

  7. Python使用pandas将表格数据进行处理

    这篇文章主要介绍了Python使用pandas将表格数据进行处理,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感兴趣的小伙伴可以参考一下

  8. php 删除指定文件夹的实例讲解

    下面小编就为大家带来一篇php 删除指定文件夹的实例讲解。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧

  9. AngularJS动态添加数据并删除的实例

    下面小编就为大家分享一篇AngularJS动态添加数据并删除的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

  10. pandas数据类型之Series的具体使用

    本文主要介绍了pandas数据类型之Series的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部