直线检测原理

核心要点:图像坐标空间、参数空间、极坐标参数空间 -> (极坐标)参数空间表决

给定一个点,我们一般会写成y=ax b的形式,这是坐标空间的写法;我们也可以写成b=-xa y的形式,这是参数空间的写法。也就是说,给定一个点,那么经过该点的直线的参数必然满足b=-xa y这一条件,也就是必然在参数空间中b=-xa y这条直线上。如果给定两个点,那么这两点确定的唯一的直线的参数,就是参数空间中两条参数直线的交点。

由于上述写法不适合处理水平或垂直的直线,我们可以使用极坐标的形式描述直线,即ρ=xcosθ ysinθ,其中ρ是从原点到直线的垂直距离,θ是由这条垂直线和水平轴形成的角度(以逆时针方向测量),

如下图所示:

因此,任何垂直线θ=0,水平线θ=90°。那么极坐标参数空间中的曲线交点就是由两个点确定的一条直线,如下图所示。

现在让我们看看Hough变换是如何处理直线的。任何一条线都可以用这两个参数来表示(ρ,θ)。

  • 首先创建一个二维数组,即累加器,用来保存两个参数的值,然后最初将其设置为全0。让行表示ρ,列表示θ。数组的尺寸取决于所需的精度。假设希望角度的精度为1度,则需要180列,枚举0°-179°的所有情况。对于ρ,可能的最大距离是图像的对角线长度。因此,以一个像素的精度计算,行数可以是图像的对角线长度。
  • 枚举所有的点,对于每一个点,将所有经过这一点的直线对应的参数(ρ,θ)在参数空间中找到对应位置,令该位置的累加器加1,即投票。这一过程如下图所示。

枚举完成所有点之后,累加器中值最大的(若干个)参数组合(ρ,θ)就是经过点最多的(若干条)直线,如下图所示,两条直线对应累加器中最亮的两个点。

总的来说,对于多个点,我们可以用(离散)参数空间表决的方法,记录每个点对应的允许的参数组合,求得那些被允许次数最多的参数组合,就是最多点经过的直线。

在图像矫正任务中,我们经过Canny算子检测出了若干边缘点,这些点主要集中在四个边界上,因此我们只需要使用Hough直线检测,求出四条直线,就能确定四个边界。

OpenCV实现

cv.HoughLines()封装了上述步骤,该函数原型为:

cv.HoughLines(image, rho, theta, threshold[, lines[, srn[, stn[, min_theta[, max_theta]]]]]) -> lines

参数:

  • lines:数组,每一个元素都是一条直线对应的(ρ, θ),ρ以像素为单位,θ以弧度为单位。
  • image:输入图像,需要是二值图像,所以在应用hough变换之前应用阈值或canny边缘检测。
  • rho:ρ的精度。
  • theta:θ的精度。
  • threshold:阈值,得票数高于该值的线才被认为是线,由于投票数取决于线上的点数,所以它代表了应该被检测到的线的最小点数。

下面是具体代码:

def hough_detect(image_path):
    # 读取图像并转换为灰度图像
    image = cv2.imread(image_path)
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    # 使用Canny算子检测边缘
    edges = canny_detect(image_path, False)
    # 使用Hough检测直线
    lines = cv2.HoughLines(edges, 1, np.pi/180, 200)
    # 绘制直线
    for line in lines:
        rho, theta = line[0]
        a = np.cos(theta)
        b = np.sin(theta)
        x0 = a * rho
        y0 = b * rho
        x1 = int(x0   1000*(-b))
        y1 = int(y0   1000*(a))
        x2 = int(x0 - 1000*(-b))
        y2 = int(y0 - 1000*(a))
        cv2.line(image, (x1, y1), (x2, y2), (0, 0, 255), 2)
    cv2.imshow('line,jpg', image)
    cv2.waitKey()
hough_detect('images/2.jpeg')

效果:

后面需要调整一下超参数。

到此这篇关于Python OpenCV Hough直线检测算法的原理实现的文章就介绍到这了,更多相关Python OpenCV Hough 内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

Python OpenCV Hough直线检测算法的原理实现的更多相关文章

  1. iOS使用openCV检测来自摄像头的矩形

    如果我在处理它之前克隆matimage,通过记录它,它似乎处理图像甚至找到矩形,但矩形不会被绘制到图像输出到imageView.我很确定我错过了一些东西,可能是因为我没有正确传递某个对象,指向对象的指针等等,而我需要修改的对象则没有.无论如何,如果这不是正确的方法,我真的很感谢他们做这样的事情的教程或例子,使用openCV或GPUImage…它不需要尝试使用matimage来设置imageView.image,而只需要将matimage转换为在imageView中实际修改,因为CvVideoCamera已

  2. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  3. 使用Xcode为OS X Lion / Mountain Lion编译OpenCV(2.3.1)

    任何人都可以为我提供一些如何使用Xcode在OSXLion上编译OpenCV2.3.1的详细指南吗?我对此感到生气…我得到了源码,使用cmake创建Xcode模板并尝试构建它,但它失败了大约200个错误.提前致谢,大教堂解答我的回答帖子.解决方法详细指南如何使用MacPorts在Xcode4.2.1的OSXLion下启动和运行OpenCV2.3.1编辑08/06/2012:这也适用于OpenCV2.4.1.只需确保您获得最新版本的Xcode并安装“命令行工具”.编辑15/08/2012:使用Mountai

  4. ios – OpenCV构建问题,找不到ext/atomicity.h

    我得到编译器错误抱怨在构建包含OpenCV的项目时.环境是针对iOS的Xcode4.5.它为模拟器编译良好,但在为设备构建时失败.这是错误文本:我正在使用opencv2.framework,使用指令here构建cmake.解决方法默认情况下,XCode4.5使用libc(支持C11的LLVMC标准库)生成要构建的新项目.但OpenCV期望针对GNUlibstd

  5. 从IOS / iPad / iPhone的最大速度

    我使用OpenCVforiOS完成计算密集型应用程序.当然这很慢.但它比我的PC原型慢了200倍.所以我正在优化它.从最初的15秒,我能够获得0.4秒的速度.我想知道我是否找到了所有的东西以及别人想要分享的东西.我做了什么:>将OpenCV中的“double”数据类型替换为“float”.双倍是64位,32位cpu不能轻易处理,所以浮动给了我一些速度.OpenCV经常使用双倍.>为编译器选项添加了

  6. 用Swift实现MD5算法&引入第三方类库MBProgressHUD

    之前项目里面是用objc写的MD5加密算法,最近在用swift重写以前的项目,遇到了这个问题。顺带解决掉的还有如何引入第三方的类库,例如MBProgressHUD等一些特别好的控件解决的方法其实是用objc和swift混合编程的方法,利用Bridging-header文件。你可以简单的理解为在一个用swift语言开发的工程中,引入objective-c文件是需要做的一个串联文件,好比架设了一个桥,让swift中也可以调用objective-c的类库和frame等等。

  7. swift排序算法和数据结构

    vararrayNumber:[Int]=[2,4,216)">6,216)">7,216)">3,216)">8,216)">1]//冒泡排序funcmaopao->[Int]{forvari=0;i

  8. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  9. swift - 函数指针的应用 - 避免重复算法

    =nil;})}privatefuncsearch(selector:(Employee->Bool))->[Employee]{varresults=[Employee]();foreinemployees{if(selector(e)){results.append(e);}}returnresults;}}

  10. 如何用 Swift 实现 A* 寻路算法

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部