介绍

构造最小生成树还有一种算法,即 Kruskal 算法:设图 G=(V,E)是无向连通带权图,V={1,2,...n};设最小生成树 T=(V,TE),该树的初始状态只有 n 个节点而无边的非连通图T=(V,{}),Kruskal 算法将这n 个节点看成 n 个孤立的连通分支。它首先将所有边都按权值从小到大排序,然后值要在 T 中选的边数不到 n-1,就做这样贪心选择:在边集 E 中选择权值最小的边(i,j),如果将边(i,j)加入集合 TE 中不产生回路,则将边(i,j)加入边集 TE 中,即用边(i,j)将这两个分支合并成一个连通分支;否则继续选择下一条最短边。把边(i,j)从集合 E 中删去,继续上面的贪心选择,直到 T 中的所有节点都在同一个连通分支上为止。此时,选取的 n-1 条边恰好构成图 G 的一棵最小生成树 T。

Kruskal 算法用一种非常聪明的方法,就是运用集合避圈;如果所选择加入边的起点和终点都在 T 集合中,就可以断定会形成回路,变的两个节点不能属于同一个集合。

算法步骤

1 初始化。将所有边都按权值从小到大排序,将每个节点集合号都初始化为自身编号。

2 按排序后的顺序选择权值最小的边(u,v)。

3 如果节点 u 和 v 属于两个不同的连通分支,则将边(u,v)加入边集 TE 中,并将两个连通分支合并。

4 如果选取的边数小于 n-1,则转向步骤2,否则算法结束。

一、构建后的图

二、代码

package graph.kruskal;
 
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.Scanner;
 
public class Kruskal {
    static final int N = 100;
    static int fa[] = new int[N];
    static int n;
    static int m;
 
    static Edge e[] = new Edge[N * N];
    static List<Edge> edgeList = new ArrayList();
 
    static {
        for (int i = 0; i < e.length; i  ) {
            e[i] = new Edge();
        }
    }
 
    // 初始化集合号为自身
    static void Init(int n) {
        for (int i = 1; i <= n; i  )
            fa[i] = i;
    }
 
    // 合并
    static int Merge(int a, int b) {
        int p = fa[a];
        int q = fa[b];
        if (p == q) return 0;
        for (int i = 1; i <= n; i  ) { // 检查所有结点,把集合号是 q 的改为 p
            if (fa[i] == q)
                fa[i] = p; // a 的集合号赋值给 b 集合号
        }
        return 1;
    }
 
    // 求最小生成树
    static int Kruskal(int n) {
        int ans = 0;
        Collections.sort(edgeList);
        for (int i = 0; i < m; i  )
            if (Merge(edgeList.get(i).u, edgeList.get(i).v) == 1) {
                ans  = edgeList.get(i).w;
                n--;
                if (n == 1)//n-1次合并算法结束
                    return ans;
            }
        return 0;
    }
 
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        n = scanner.nextInt();
        m = scanner.nextInt();
        Init(n);
        for (int i = 1; i <= m; i  ) {
            e[i].u = scanner.nextInt();
            e[i].v = scanner.nextInt();
            e[i].w = scanner.nextInt();
            edgeList.add(e[i]);
        }
        System.out.println("最小的花费是:"   Kruskal(n));
    }
}
 
class Edge implements Comparable {
    int u;
    int w;
    int v;
 
    @Override
    public int compareTo(Object o) {
        if (this.w > ((Edge) o).w) {
            return 1;
        } else if (this.w == ((Edge) o).w) {
            return 0;
        } else {
            return -1;
        }
    }
}

三、测试

绿色为输入,白色为输出。

到此这篇关于Java实现Kruskal算法的示例代码的文章就介绍到这了,更多相关Java Kruskal算法内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

Java实现Kruskal算法的示例代码的更多相关文章

  1. 用Swift实现MD5算法&amp;引入第三方类库MBProgressHUD

    之前项目里面是用objc写的MD5加密算法,最近在用swift重写以前的项目,遇到了这个问题。顺带解决掉的还有如何引入第三方的类库,例如MBProgressHUD等一些特别好的控件解决的方法其实是用objc和swift混合编程的方法,利用Bridging-header文件。你可以简单的理解为在一个用swift语言开发的工程中,引入objective-c文件是需要做的一个串联文件,好比架设了一个桥,让swift中也可以调用objective-c的类库和frame等等。

  2. swift排序算法和数据结构

    vararrayNumber:[Int]=[2,4,216)">6,216)">7,216)">3,216)">8,216)">1]//冒泡排序funcmaopao->[Int]{forvari=0;i

  3. swift - 函数指针的应用 - 避免重复算法

    =nil;})}privatefuncsearch(selector:(Employee->Bool))->[Employee]{varresults=[Employee]();foreinemployees{if(selector(e)){results.append(e);}}returnresults;}}

  4. 如何用 Swift 实现 A* 寻路算法

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  5. swift算法实践1

    在通常的表达式中,二元运算符总是置于与之相关的两个运算对象之间,所以,这种表示法也称为中缀表示。波兰逻辑学家J.Lukasiewicz于1929年提出了另一种表示表达式的方法。逆波兰表达式,它的语法规定,表达式必须以逆波兰表达式的方式给出。如果,该字符优先关系高于此运算符栈顶的运算符,则将该运算符入栈。倘若不是的话,则将栈顶的运算符从栈中弹出,直到栈顶运算符的优先级低于当前运算符,将该字符入栈。

  6. swift算法实践2

    字符串hash算法Time33在效率和随机性两方面上俱佳。对于一个Hash函数,评价其优劣的标准应为随机性,即对任意一组标本,进入Hash表每一个单元之概率的平均程度,因为这个概率越平均,数据在表中的分布就越平均,表的空间利用率就越高。Times33的算法很简单,就是不断的乘33,见下面算法原型。

  7. swift算法实践3)-KMP算法字符串匹配

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  8. swift算法实践4)-trie自动机

    1、trie自动机是识别字符串的确定性有向无环自动机2、图示3、构造代码F包括了状态q所对应的P中的字符串

  9. Swift 算法实战之路一

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  10. Swift 算法实战之路二

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

随机推荐

  1. 基于EJB技术的商务预订系统的开发

    用EJB结构开发的应用程序是可伸缩的、事务型的、多用户安全的。总的来说,EJB是一个组件事务监控的标准服务器端的组件模型。基于EJB技术的系统结构模型EJB结构是一个服务端组件结构,是一个层次性结构,其结构模型如图1所示。图2:商务预订系统的构架EntityBean是为了现实世界的对象建造的模型,这些对象通常是数据库的一些持久记录。

  2. Java利用POI实现导入导出Excel表格

    这篇文章主要为大家详细介绍了Java利用POI实现导入导出Excel表格,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

  3. Mybatis分页插件PageHelper手写实现示例

    这篇文章主要为大家介绍了Mybatis分页插件PageHelper手写实现示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  4. (jsp/html)网页上嵌入播放器(常用播放器代码整理)

    网页上嵌入播放器,只要在HTML上添加以上代码就OK了,下面整理了一些常用的播放器代码,总有一款适合你,感兴趣的朋友可以参考下哈,希望对你有所帮助

  5. Java 阻塞队列BlockingQueue详解

    本文详细介绍了BlockingQueue家庭中的所有成员,包括他们各自的功能以及常见使用场景,通过实例代码介绍了Java 阻塞队列BlockingQueue的相关知识,需要的朋友可以参考下

  6. Java异常Exception详细讲解

    异常就是不正常,比如当我们身体出现了异常我们会根据身体情况选择喝开水、吃药、看病、等 异常处理方法。 java异常处理机制是我们java语言使用异常处理机制为程序提供了错误处理的能力,程序出现的错误,程序可以安全的退出,以保证程序正常的运行等

  7. Java Bean 作用域及它的几种类型介绍

    这篇文章主要介绍了Java Bean作用域及它的几种类型介绍,Spring框架作为一个管理Bean的IoC容器,那么Bean自然是Spring中的重要资源了,那Bean的作用域又是什么,接下来我们一起进入文章详细学习吧

  8. 面试突击之跨域问题的解决方案详解

    跨域问题本质是浏览器的一种保护机制,它的初衷是为了保证用户的安全,防止恶意网站窃取数据。那怎么解决这个问题呢?接下来我们一起来看

  9. Mybatis-Plus接口BaseMapper与Services使用详解

    这篇文章主要为大家介绍了Mybatis-Plus接口BaseMapper与Services使用详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  10. mybatis-plus雪花算法增强idworker的实现

    今天聊聊在mybatis-plus中引入分布式ID生成框架idworker,进一步增强实现生成分布式唯一ID,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

返回
顶部