创作背景

最近在忙着两个YOLOv7项目,通过看大量的论文,发现很多的相关的论文都会在收集图像后进行图像的增强,本文将使用python中的opencv模块实现常见的图像增强方法。

由于光照角度和天气等不确定因素,导致图像采集的光环境极其复杂;为了提高目标检测模型的泛化能力,本文采用了几种图像增强方法。

图像增强方法包括

  • 图像亮度增强和降低
  • 水平镜像
  • 垂直镜像
  • 多角度旋转(90°̘,180°̘,270°̘)
  • 高斯噪声

此外,考虑到图像采集设备在图像采集过程中产生的噪声,以及设备或树枝晃动造成的拍摄图像模糊,在图像中加入方差为0.02的高斯噪声,进行运动模糊处理。

图像亮度增强和降低

图像亮度。指数字图像中包含色彩的明暗程度,是人眼对物体本身明暗程度的感觉。

图像亮度调节可以采用最简单的图像处理算法,通过常见的线性运算即完成亮度调节,这里我们让所有的像素点亮度值乘上一个增强系数 percetage,使得图像整体变亮或者变暗。

# 变暗
def Darker(image,percetage=0.9):
    image_copy = image.copy()
    w = image.shape[1]
    h = image.shape[0]
    #get darker
    for xi in range(0,w):
        for xj in range(0,h):
            image_copy[xj,xi,0] = int(image[xj,xi,0]*percetage)
            image_copy[xj,xi,1] = int(image[xj,xi,1]*percetage)
            image_copy[xj,xi,2] = int(image[xj,xi,2]*percetage)
    return image_copy
# 明亮
def Brighter(image, percetage=1.1):
    image_copy = image.copy()
    w = image.shape[1]
    h = image.shape[0]
    #get brighter
    for xi in range(0,w):
        for xj in range(0,h):
            image_copy[xj,xi,0] = np.clip(int(image[xj,xi,0]*percetage),a_max=255,a_min=0)
            image_copy[xj,xi,1] = np.clip(int(image[xj,xi,1]*percetage),a_max=255,a_min=0)
            image_copy[xj,xi,2] = np.clip(int(image[xj,xi,2]*percetage),a_max=255,a_min=0)
    return image_copy

旋转

本文使用opencv中的使用getRotationMatrix2D() 函数和warpAffine() 函数实现旋转原始图像,通过改变函数参数“angle”分别实现90°̘、180°̘、270°旋转。变换后的图像可以通过正确识别不同方位的目标来提高模型的检测性能。改变函数参数scal一个各向同性比例因子,根据提供的值向上或向下缩放图像。

# 旋转,R可控制图片放大缩小
def Rotate(image, angle=15, scale=1):
    w = image.shape[1]
    h = image.shape[0]
    #rotate matrix
    M = cv2.getRotationMatrix2D((w/2,h/2), angle, scale)
    #rotate
    image = cv2.warpAffine(image,M,(w,h))
    return image

水平镜像和垂直镜像

图像镜像(水平和垂直镜像)是通过opencv中的使用flip函数实现的,通过以图像的垂直线为中心变换图像的左侧和右侧来实现水平镜像。垂直镜像是通过以图像的水平中心线为中心变换图像的上下侧来实现的。

# 水平翻转
def Horizontal(image):
    return cv2.flip(image,1,dst=None)
 
# 垂直翻转
def Vertical(image):
    return cv2.flip(image,0,dst=None)

高斯噪声

本文使用NumPy中的可以产生符合高斯分布(正态分布)的随机数的 np.random.normal()函数。利用产生随机数的函数来对图像添加方差为0.02的高斯噪声。

def gaussian_noise(image, mean=0, var=0.02):
    # 添加高斯噪声
    # mean : 均值
    # var : 方差
    image = np.array(image / 255, dtype=float)
    noise = np.random.normal(mean, var ** 0.5, image.shape)
    out = image   noise
    if out.min() < 0:
        low_clip = -1.
    else:
        low_clip = 0.
    out = np.clip(out, low_clip, 1.0)
    out = np.uint8(out * 255)
    return out

其它图像增强的方法

# 放大缩小
def Scale(image, scale):
    return cv2.resize(image,None,fx=scale,fy=scale,interpolation=cv2.INTER_LINEAR)
# 平移
def Move(img,x,y):
    img_info=img.shape
    height=img_info[0]
    width=img_info[1]
 
    mat_translation=np.float32([[2,0,x],[0,2,y]])  #变换矩阵:设置平移变换所需的计算矩阵:2行3列
    #[[1,0,20],[0,1,50]]   表示平移变换:其中x表示水平方向上的平移距离,y表示竖直方向上的平移距离。
    dst=cv2.warpAffine(img,mat_translation,(width,height))  #变换函数
# 椒盐噪声
def SaltAndPepper(src,percetage=0.05):
    SP_NoiseImg=src.copy()
    SP_NoiseNum=int(percetage*src.shape[0]*src.shape[1])
    for i in range(SP_NoiseNum):
        randR=np.random.randint(0,src.shape[0]-1)
        randG=np.random.randint(0,src.shape[1]-1)
        randB=np.random.randint(0,3)
        if np.random.randint(0,1)==0:
            SP_NoiseImg[randR,randG,randB]=0
        else:
            SP_NoiseImg[randR,randG,randB]=255
    return SP_NoiseImg
#模糊
def Blur(img):
    blur = cv2.GaussianBlur(img, (7, 7), 1.5)
    # #      cv2.GaussianBlur(图像,卷积核,标准差)
    return blur

适用于项目的的整体代码

为了满足项目的使用,我对上述代码进行了了扩充,实现了对单个图片,单个文件夹和多个文件夹中多个图片的图像的增强

到此这篇关于Python OpenCV实现图像增强操作详解的文章就介绍到这了,更多相关Python OpenCV图像增强内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

Python OpenCV实现图像增强操作详解的更多相关文章

  1. iOS使用openCV检测来自摄像头的矩形

    如果我在处理它之前克隆matimage,通过记录它,它似乎处理图像甚至找到矩形,但矩形不会被绘制到图像输出到imageView.我很确定我错过了一些东西,可能是因为我没有正确传递某个对象,指向对象的指针等等,而我需要修改的对象则没有.无论如何,如果这不是正确的方法,我真的很感谢他们做这样的事情的教程或例子,使用openCV或GPUImage…它不需要尝试使用matimage来设置imageView.image,而只需要将matimage转换为在imageView中实际修改,因为CvVideoCamera已

  2. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  3. 使用Xcode为OS X Lion / Mountain Lion编译OpenCV(2.3.1)

    任何人都可以为我提供一些如何使用Xcode在OSXLion上编译OpenCV2.3.1的详细指南吗?我对此感到生气…我得到了源码,使用cmake创建Xcode模板并尝试构建它,但它失败了大约200个错误.提前致谢,大教堂解答我的回答帖子.解决方法详细指南如何使用MacPorts在Xcode4.2.1的OSXLion下启动和运行OpenCV2.3.1编辑08/06/2012:这也适用于OpenCV2.4.1.只需确保您获得最新版本的Xcode并安装“命令行工具”.编辑15/08/2012:使用Mountai

  4. ios – OpenCV构建问题,找不到ext/atomicity.h

    我得到编译器错误抱怨在构建包含OpenCV的项目时.环境是针对iOS的Xcode4.5.它为模拟器编译良好,但在为设备构建时失败.这是错误文本:我正在使用opencv2.framework,使用指令here构建cmake.解决方法默认情况下,XCode4.5使用libc(支持C11的LLVMC标准库)生成要构建的新项目.但OpenCV期望针对GNUlibstd

  5. 从IOS / iPad / iPhone的最大速度

    我使用OpenCVforiOS完成计算密集型应用程序.当然这很慢.但它比我的PC原型慢了200倍.所以我正在优化它.从最初的15秒,我能够获得0.4秒的速度.我想知道我是否找到了所有的东西以及别人想要分享的东西.我做了什么:>将OpenCV中的“double”数据类型替换为“float”.双倍是64位,32位cpu不能轻易处理,所以浮动给了我一些速度.OpenCV经常使用双倍.>为编译器选项添加了

  6. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  7. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  8. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  9. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  10. 在Swift iOS中使用OpenCV

    在我的xcode项目中添加OpenCV2框架后,我试图搜索samlpes或教程与swift集成。有什么好的教程同样吗?OpenCV是用C编写的框架。苹果的reference告诉我们YoucannotimportC++codedirectlyintoSwift.Instead,createanObjective-CorCwrapperforC++code.所以你不能在一个swift项目中直接导入和使用OpenCV,但这实际上并不坏,因为你(需要)继续使用框架的C语法,这是在网络上有很多文档。那么你怎么进行呢

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部