1.问题描述

2.实现

package com.platform.modules.alg.alglib.p933;
 
import java.util.Arrays;
import java.util.PriorityQueue;
 
public class P933 {
    public static final int N = 10;
    // 记录最优解
    boolean bestx[] = new boolean[N];
    // 辅助数组,用于存储排序后的重量和价值
    private int w[] = new int[N];
    private int v[] = new int[N];
    Goods goods[] = new Goods[N];
    Object S[] = new Object[N];
    // 用来记录最优解
    Integer bestp;
    // 为背包的最大容量
    int W;
    // 为物品的个数。
    int n;
    // 为所有物品的总重量。
    int sumw;
    // 为所有物品的总价值
    int sumv;
    public String output = "";
 
    public P933() {
        for (int i = 0; i < goods.length; i  ) {
            goods[i] = new Goods();
        }
        for (int i = 0; i < S.length; i  ) {
            S[i] = new Object();
        }
    }
 
    // 计算节点的上界
    double Bound(Node tnode) {
        // 已装入背包物品价值
        double maxvalue = tnode.cp;
        int t = tnode.id; // 排序后序号
        double left = tnode.rw; // 剩余容量
        while (t <= n && w[t] <= left) {
            maxvalue  = v[t];
            left -= w[t  ];
        }
        if (t <= n)
            maxvalue  = ((double) (v[t])) / w[t] * left;
        return maxvalue;
    }
 
    public String cal(String input) {
 
 
        String[] line = input.split("\n");
        String[] words = line[0].split(" ");
        // 物品的个数和背包的容量
        n = Integer.parseInt(words[0]);
        W = Integer.parseInt(words[1]);
        bestp = 0; // 用来记录最优解
        sumw = 0; // sumw 为所有物品的总重量。
        sumv = 0; // sumv为所有物品的总价值
 
        words = line[1].split(" ");
        for (int i = 1; i <= words.length / 2; i  ) { // 输入每个物品的重量和价值,用空格分开
            goods[i].weight = Integer.parseInt(words[2 * i - 2]);
            goods[i].value = Integer.parseInt(words[2 * i - 1]);
            sumw  = goods[i].weight;
            sumv  = goods[i].value;
            S[i - 1].id = i;
            S[i - 1].d = 1.0 * goods[i].value / goods[i].weight;
        }
        if (sumw <= W) {
            bestp = sumv;
            output = bestp.toString();
            return output;
        }
        Arrays.sort(S); // 按价值重量比非递增排序
        for (int i = 1; i <= n; i  ) {//把排序后的数据传递给辅助数组
            w[i] = goods[S[i - 1].id].weight;
            v[i] = goods[S[i - 1].id].value;
        }
        priorbfs();//优先队列分支限界法
        output  = bestp   "\n";
 
        for (int i = 1; i <= n; i  ) { // 输出最优解
            if (bestx[i])
                output  = S[i - 1].id   " "; // 输出原物品序号(排序前的)
        }
        return output;
    }
 
    // 优先队列式分支限界法
    int priorbfs() {
        // 当前处理的物品序号t,当前装入背包物品价值tcp,当前剩余容量trw
        int t, tcp, trw;
        double tup;  // 当前价值上界 tup
        PriorityQueue<Node> q = new PriorityQueue<>(); // 优先队列
 
        q.add(new Node(0, sumv, W, 1)); // 初始化,根结点加入优先队列
        while (!q.isEmpty()) {
            // 定义三个结点型变量
            Node livenode;
            Node lchild = new Node();
            Node rchild = new Node();
            livenode = q.peek(); // 取出队头元素作为当前扩展结点 livenode
            q.poll(); // 队头元素出队
            t = livenode.id; // 当前处理的物品序号
            // 搜到最后一个物品的时候不需要往下搜索。
            // 如果当前的背包没有剩余容量(已经装满)了,不再扩展。
            if (t > n || livenode.rw == 0) {
                if (livenode.cp >= bestp) { // 更新最优解和最优值
                    for (int i = 1; i <= n; i  )
                        bestx[i] = livenode.x[i];
                    bestp = livenode.cp;
                }
                continue;
            }
            if (livenode.up < bestp)//如果不满足不再扩展
                continue;
            tcp = livenode.cp; //当前背包中的价值
            trw = livenode.rw; //背包剩余容量
            if (trw >= w[t]) { //扩展左孩子,满足约束条件,可以放入背包
                lchild.cp = tcp   v[t];
                lchild.rw = trw - w[t];
                lchild.id = t   1;
                tup = Bound(lchild); //计算左孩子上界
                lchild = new Node(lchild.cp, tup, lchild.rw, lchild.id);
                for (int i = 1; i <= n; i  )//复制以前的解向量
                    lchild.x[i] = livenode.x[i];
                lchild.x[t] = true;
                if (lchild.cp > bestp)//比最优值大才更新
                    bestp = lchild.cp;
                q.add(lchild);//左孩子入队
            }
            rchild.cp = tcp;
            rchild.rw = trw;
            rchild.id = t   1;
            tup = Bound(rchild);//计算右孩子上界
            if (tup >= bestp) {//扩展右孩子,满足限界条件,不放入
                rchild = new Node(tcp, tup, trw, t   1);
                for (int i = 1; i <= n; i  )//复制以前的解向量
                    rchild.x[i] = livenode.x[i];
                rchild.x[t] = false;
                q.add(rchild);//右孩子入队
            }
        }
        return bestp;//返回最优值。
    }
}
 
// 定义结点。每个节点来记录当前的解。
class Node implements Comparable<Node> {
    int cp; // cp 为当前装入背包的物品总价值
    double up; // 价值上界
    int rw; //  剩余容量
    int id; // 物品号
    boolean x[] = new boolean[P933.N]; // 解向量
 
    Node() {
    }
 
    Node(int _cp, double _up, int _rw, int _id) {
        cp = _cp;
        up = _up;
        rw = _rw;
        id = _id;
    }
 
    @Override
    public int compareTo(Node o) {
        return (this.up - o.up) > 0 ? 1 : -1;
    }
}
 
// 物品
class Goods {
    int weight; // 重量
    int value; // 价值
}
 
// 辅助物品结构体,用于按单位重量价值(价值/重量比)排序
class Object implements Comparable {
    int id; // 序号
    double d; // 单位重量价值
 
 
    @Override
    public int compareTo(java.lang.Object o) {
        return this.d > ((Object) o).d ? -1 : 1;
    }
}

3.测试

到此这篇关于Java实现优先队列式广度优先搜索算法的示例代码的文章就介绍到这了,更多相关Java广度优先搜索算法内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

Java实现优先队列式广度优先搜索算法的示例代码的更多相关文章

  1. Java利用POI实现导入导出Excel表格

    这篇文章主要为大家详细介绍了Java利用POI实现导入导出Excel表格,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

  2. Java 阻塞队列BlockingQueue详解

    本文详细介绍了BlockingQueue家庭中的所有成员,包括他们各自的功能以及常见使用场景,通过实例代码介绍了Java 阻塞队列BlockingQueue的相关知识,需要的朋友可以参考下

  3. Java Bean 作用域及它的几种类型介绍

    这篇文章主要介绍了Java Bean作用域及它的几种类型介绍,Spring框架作为一个管理Bean的IoC容器,那么Bean自然是Spring中的重要资源了,那Bean的作用域又是什么,接下来我们一起进入文章详细学习吧

  4. Java实现世界上最快的排序算法Timsort的示例代码

    Timsort 是一个混合、稳定的排序算法,简单来说就是归并排序和二分插入排序算法的混合体,号称世界上最好的排序算法。本文将详解Timsort算法是定义与实现,需要的可以参考一下

  5. Java日期工具类的封装详解

    在日常的开发中,我们难免会对日期格式化,对日期进行计算,对日期进行校验,为了避免重复写这些琐碎的逻辑,我这里封装了一个日期工具类,方便以后使用,直接复制代码到项目中即可使用,需要的可以参考一下

  6. Java设计模式之模板方法模式Template Method Pattern详解

    在我们实际开发中,如果一个方法极其复杂时,如果我们将所有的逻辑写在一个方法中,那维护起来就很困难,要替换某些步骤时都要重新写,这样代码的扩展性就很差,当遇到这种情况就要考虑今天的主角——模板方法模式

  7. Java 中 Class Path 和 Package的使用详解

    这篇文章主要介绍了Java 中 Class Path和Package的使用详解,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的朋友可以参考一下

  8. java SpringBoot 分布式事务的解决方案(JTA+Atomic+多数据源)

    这篇文章主要介绍了java SpringBoot 分布式事务的解决方案(JTA+Atomic+多数据源),文章围绕主题展开详细的内容介绍,具有一定的参考价值,感兴趣的小伙伴可以参考一下

  9. Java一维数组和二维数组元素默认初始化值的判断方式

    这篇文章主要介绍了Java一维数组和二维数组元素默认初始化值的判断方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  10. java实现emqx设备上下线监听详解

    这篇文章主要为大家介绍了java实现emqx设备上下线监听详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

随机推荐

  1. 基于EJB技术的商务预订系统的开发

    用EJB结构开发的应用程序是可伸缩的、事务型的、多用户安全的。总的来说,EJB是一个组件事务监控的标准服务器端的组件模型。基于EJB技术的系统结构模型EJB结构是一个服务端组件结构,是一个层次性结构,其结构模型如图1所示。图2:商务预订系统的构架EntityBean是为了现实世界的对象建造的模型,这些对象通常是数据库的一些持久记录。

  2. Java利用POI实现导入导出Excel表格

    这篇文章主要为大家详细介绍了Java利用POI实现导入导出Excel表格,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

  3. Mybatis分页插件PageHelper手写实现示例

    这篇文章主要为大家介绍了Mybatis分页插件PageHelper手写实现示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  4. (jsp/html)网页上嵌入播放器(常用播放器代码整理)

    网页上嵌入播放器,只要在HTML上添加以上代码就OK了,下面整理了一些常用的播放器代码,总有一款适合你,感兴趣的朋友可以参考下哈,希望对你有所帮助

  5. Java 阻塞队列BlockingQueue详解

    本文详细介绍了BlockingQueue家庭中的所有成员,包括他们各自的功能以及常见使用场景,通过实例代码介绍了Java 阻塞队列BlockingQueue的相关知识,需要的朋友可以参考下

  6. Java异常Exception详细讲解

    异常就是不正常,比如当我们身体出现了异常我们会根据身体情况选择喝开水、吃药、看病、等 异常处理方法。 java异常处理机制是我们java语言使用异常处理机制为程序提供了错误处理的能力,程序出现的错误,程序可以安全的退出,以保证程序正常的运行等

  7. Java Bean 作用域及它的几种类型介绍

    这篇文章主要介绍了Java Bean作用域及它的几种类型介绍,Spring框架作为一个管理Bean的IoC容器,那么Bean自然是Spring中的重要资源了,那Bean的作用域又是什么,接下来我们一起进入文章详细学习吧

  8. 面试突击之跨域问题的解决方案详解

    跨域问题本质是浏览器的一种保护机制,它的初衷是为了保证用户的安全,防止恶意网站窃取数据。那怎么解决这个问题呢?接下来我们一起来看

  9. Mybatis-Plus接口BaseMapper与Services使用详解

    这篇文章主要为大家介绍了Mybatis-Plus接口BaseMapper与Services使用详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

  10. mybatis-plus雪花算法增强idworker的实现

    今天聊聊在mybatis-plus中引入分布式ID生成框架idworker,进一步增强实现生成分布式唯一ID,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

返回
顶部