一、Pandas Series对象

Pandas 是基于 NumPy 设计实现的 Python 数据分析库,Pandas 提供了大量的能让我们高效处理数据的函数和方法,也纳入了很多数据处理的库以及一些数据模型,可以说非常强大。

可以使用以下命令进行安装:

conda install pandas
# 或
pip install pandas

Series数据结构

Pandas 最常用的数据结构主要有两种:Series 和 DataFrame,这篇文章主要介绍一下Series及如何创建Series对象。

Series 是一维数组,由一列索引index和一列值values组成,索引和值是一一对应的,可以存储不同种类的数据类型,字符串、布尔值、数字、Python对象等都可以。

创建Series对象

创建Series对象的格式如下:

s = pd.Series(data, index)

参数data为数据,可以是字典、列表、Numpy的 ndarray 数组等;
参数index为索引,值必须唯一,类似于Python字典的键,可以不传,默认为从0开始递增的整数。

从列表创建:

data = ["a", "b", "c", "d", "e"]
s = pd.Series(data)
s

从字典创建:

当data为字典时,如果没有传入索引的话,会按照字典的键来构造索引,索引对应的值就是字典的键对应的值。

data = {"a": 1, "b": 2, "c": 3}
s = pd.Series(data)
s

结果输出如下:

a    1
b    2
c    3
dtype: int64

从 ndarray 数组创建:

ndarray 为Numpy 的数组类型,在Python数据分析 Numpy 的使用方法的文章已经介绍过。

data = np.array([1, 2, 3, 4])
s = pd.Series(data)
s

我们可以通过创建的Series对象,调用相应的属性和方法来进行数据的处理分析等。下面继续来看Series对象的基本操作

二、Series对象的基本操作

Series 常用属性

  • index:获取索引
  • values:获取数组
  • size:获取元素数量
  • dtype:获取对象的数据类型

获取索引及修改索引

data = ["a", "b", "c", "d"]
s = pd.Series(data)
print(s.index)
s.index = ["A", "B", "C", "D"]
print(s.index)

结果输出如下:

RangeIndex(start=0, stop=4, step=1)
Index(['A', 'B', 'C', 'D'], dtype='object')

指定索引对应元素的获取、修改及删除

Series 通过索引获取、修改及删除对应元素和Python字典的操作有些类似,具体使用方法如下:

# 获取数据
print(s["A"])
# 修改数据
s['A'] = 99
# 删除数据
s = s.drop("B")
s

另外,Series 也支持通过筛选条件获取数据,例如获取能被2整除的数据:

data = np.array([1, 2, 3, 4])
s = pd.Series(data)
s[s%2==0]

Series 切片

Series 切片操作同Python列表的切面也是类似的,如下:

s[0:3] 

表示取第0、1、2个数据。

也可以使用索引值来进行切片,例如获取索引值B-D的值:

s["B":"D"]
复制代码

Series 常用方法

  • head(n):返回前n行数据,默认前5行
  • tail(n):返回后n行数据,默认后5行
  • isnull()&nonull():判断是否为空,返回True和False
  • sort_values():排序,通过传递ascending参数来确定升序or降序,默认为True,表示升序
  • dropna():删除空值

Series 运算

统计信息

可以通过describe()方法获取统计信息,如下:

也可以通过如下方法分别获取:

  • min():获取最小值
  • max():获取最大值
  • mean():获取均值
  • median():获取中位数
  • sum():获取总和
  • count():获取总数
  • ······

四则运算

s 2  # 对每个元素进行 2
s*100  # 对每个元素乘100

也可以调用如下方法进行:加法add()、减法sub()、乘法mul()、除法div()

到此这篇关于Python数据分析之 Pandas Series对象的文章就介绍到这了,更多相关Pandas Series对象内容请搜索Devmax以前的文章或继续浏览下面的相关文章希望大家以后多多支持Devmax!

Python数据分析 Pandas Series对象操作的更多相关文章

  1. XCode 3.2 Ruby和Python模板

    在xcode3.2下,我的ObjectiveCPython/Ruby项目仍然可以打开更新和编译,但是你无法创建新项目.鉴于xcode3.2中缺少ruby和python的所有痕迹(即创建项目并添加新的ruby/python文件),是否有一种简单的方法可以再次安装模板?我发现了一些关于将它们复制到某个文件夹的信息,但我似乎无法让它工作,我怀疑文件夹的位置已经改变为3.2.解决方法3.2中的应用程序模板

  2. Swift基本使用-函数和闭包(三)

    声明函数和其他脚本语言有相似的地方,比较明显的地方是声明函数的关键字swift也出现了Python中的组元,可以通过一个组元返回多个值。传递可变参数,函数以数组的形式获取参数swift中函数可以嵌套,被嵌套的函数可以访问外部函数的变量。可以通过函数的潜逃来重构过长或者太复杂的函数。

  3. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  4. Swift、Go、Julia与R能否挑战 Python 的王者地位

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  5. 红薯因 Swift 重写开源中国失败,貌似欲改用 Python

    本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请发送邮件至dio@foxmail.com举报,一经查实,本站将立刻删除。

  6. 你没看错:Swift可以直接调用Python函数库

    上周Perfect又推出了新一轮服务器端Swift增强函数库:Perfect-Python。对,你没看错,在服务器端Swift其实可以轻松从其他语种的函数库中直接拿来调用,不需要修改任何内容。以如下python脚本为例:Perfect-Python可以用下列方法封装并调用以上函数,您所需要注意的仅仅是其函数名称以及参数。

  7. Swift中的列表解析

    在Swift中完成这个的最简单的方法是什么?我在寻找类似的东西:从Swift2.x开始,有一些与你的Python样式列表解析相当的东西。(在这个意义上,它更像是Python的xrange。如果你想保持集合懒惰一路通过,只是这样说:与Python中的列表解析语法不同,Swift中的这些操作遵循与其他操作相同的语法。

  8. swift抛出终端的python错误

    每当我尝试启动与python相关的swift时,我都会收到错误.我该如何解决?

  9. 在Android上用Java嵌入Python

    解决方法看看this,它适用于J2SE,你可以尝试在Android上运行.

  10. 在android studio中使用python代码构建android应用程序

    我有一些python代码和它的机器人,我正在寻找一种方法来使用android项目中的那些python代码.有没有办法做到这一点!?解决方法有两种主要工具可供使用,它们彼此不同:>QPython>Kivy使用Kivy,大致相同的代码也可以部署到IOS.

随机推荐

  1. 10 个Python中Pip的使用技巧分享

    众所周知,pip 可以安装、更新、卸载 Python 的第三方库,非常方便。本文小编为大家总结了Python中Pip的使用技巧,需要的可以参考一下

  2. python数学建模之三大模型与十大常用算法详情

    这篇文章主要介绍了python数学建模之三大模型与十大常用算法详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感想取得小伙伴可以参考一下

  3. Python爬取奶茶店数据分析哪家最好喝以及性价比

    这篇文章主要介绍了用Python告诉你奶茶哪家最好喝性价比最高,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

  4. 使用pyinstaller打包.exe文件的详细教程

    PyInstaller是一个跨平台的Python应用打包工具,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,下面这篇文章主要给大家介绍了关于使用pyinstaller打包.exe文件的相关资料,需要的朋友可以参考下

  5. 基于Python实现射击小游戏的制作

    这篇文章主要介绍了如何利用Python制作一个自己专属的第一人称射击小游戏,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试

  6. Python list append方法之给列表追加元素

    这篇文章主要介绍了Python list append方法如何给列表追加元素,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

  7. Pytest+Request+Allure+Jenkins实现接口自动化

    这篇文章介绍了Pytest+Request+Allure+Jenkins实现接口自动化的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  8. 利用python实现简单的情感分析实例教程

    商品评论挖掘、电影推荐、股市预测……情感分析大有用武之地,下面这篇文章主要给大家介绍了关于利用python实现简单的情感分析的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

  9. 利用Python上传日志并监控告警的方法详解

    这篇文章将详细为大家介绍如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务,感兴趣的小伙伴可以了解一下

  10. Pycharm中运行程序在Python console中执行,不是直接Run问题

    这篇文章主要介绍了Pycharm中运行程序在Python console中执行,不是直接Run问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

返回
顶部